Hungarian Immunology

[Plasmacytoid dendritic cells - type I interferon producing cells]

MAGYARICS Zoltán, RAJNAVÖLGYI Éva

OCTOBER 10, 2005

Hungarian Immunology - 2005;4(03-04)

[Dendritic cells represent a multifunctional cell population classified to myeloid (mDC) and plasmacytoid (pDC) types. Both subsets circulate in the peripheral blood and are found in lymphoid and also in non-lymphoid tissues, where they act as sensors of environmental changes. Upon activation by a wide range of stimuli they undergo morphological and functional transition and give rise to professional antigen presenting cells, which migrate to lymphoid organs. A newly identified precursor subset of human dendritic cells has recently been identified as professional type I interferon producing cells (IPC) with multiple functional activities. With their capacity of priming, instructing and regulating various pathogen- and tumor-specific immune responses, IPC/pDC act as a link between innate and adaptive immunity. The role of pDC in the pathogenesis of various diseases is well established, and these cells also emerge as novel candidates of immunomodulation.]

COMMENTS

0 comments

Further articles in this publication

Hungarian Immunology

[Does practice make a master?]

SZEGEDI Gyula

Hungarian Immunology

[Transmission of antibodies from mother to offspring: evolutionary aspects]

BAINTNER Károly

[The earliest known form of transmission of antibody is the transport from the maternal circulation into the yolk during vitellogenesis (in birds and reptiles), followed by endodermal uptake and transport into the embryonal circulation. During the early mammalian evolution lacteal secretion and the development of the placenta opened new ways to feed the young. These changes also resulted in alterations in sites and mechanisms of transmission of immunoglobulins. In a few species (e.g. rabbit and rodents) the yolk-less yolk sac gained a new function, i.e. the absorption of uterine secretion. In most of the mammalian species the neonatal type Fc-receptor (FcRn) plays a key role in the transmission and confers IgG-selectivity on the process. In ungulates undigested colostral proteins, including antibodies, are absorbed non-selectively by the gut, mediated by sizable transport vacuoles. The limited postnatal transmission period (24 to 48 h) is compensated by the considerable length of the small intestine and the efficiency of absorption. In the human chorioallantoic placenta the two steps of transmission (maternal secretion and absorption by the offspring) were reduced to a single step. Absorption of IgG is often carried out in a proteolytic environment (yolk sac, gut lumen, intestinal vacuoles), and as a result, different mechanisms evolved for the protection of antibody.]

Hungarian Immunology

[Regulatory T cells in mixed connective tissue disease]

BARÁTH Sándor, ALEKSZA Magdolna, SZEGEDI Andrea, SIPKA Sándor, SZEGEDI Gyula, BODOLAY Edit

[INTRODUCTION - CD4+/CD25+high suppressor and IL-10 producing CD4+ regulatory T (IL-10 Treg) cells were investigated in the peripheral blood of 48 patients with mixed connective tissue disease (MCTD). Seventeen patients were in active and 31 patients in inactive state. PATIENTS AND METHODS - Measurement of the number of CD4+CD25+high suppressor and IL-10 Treg cells was carried out by flow cytometry. RESULTS - The absolute number and percent of CD4+CD25+high T cells decreased in MCTD patients compared to the healthy controls. The number of CD4+CD25+high Treg cells was lower in 17 active MCTD patients than in the inactive patients. The percent and absolute number of IL-10 Treg was elevated in the peripheral blood of patients with MCTD compared to the healthy controls. Corticosteroid and immunosuppressive drugs moved the number of regulatory T cells (CD4+CD25+high and IL-10 Treg cells) towards the normal value. CONCLUSIONS - Our results show that the decrease in the number of CD4+CD25+high T cells could play a key role in the immunoregulatory disturbance in MCTD. Elevation in the number of IL-10 Treg cells might be a compensatory mechanism to retain the balance of proinflammatory and anti-inflammatory cytokines.]

Hungarian Immunology

[Extensive flow cytometric characterization of plasmocytoid dendritic cell leukemia cells]

GOPCSA László, KORMOS Luca, BÁNYAI Anikó, TAMÁSKA Júlia, MATOLCSY András, GOGOLÁK Péter, RAJNAVÖLGYI Éva, PÁLÓCZI Katalin

[INTRODUCTION - Accumulating evidences suggest that non-T, non-B cell CD4+/CD56+ neoplasms with lymphoblastic morphology include clinically and immunophenotypically diverse entities. Although their cells of origin or classification are still controversial several entities clearly represent a distinct type of neoplasms that are clinically aggressive. CASE REPORT - In this work we present the immunophenotypic and genotypic features of bone marrow, peripheral blood, lymph node and skin lymphocytes from a patient diagnosed as plasmacytoid dendritic cell leukemia involving the skin, bone marrow, peripheral blood, lymph nodes, liver and spleen. For determination of immunophenotypic characteristics of malignant plasmacytoid dendritic cells 73 monoclonal antibodies detecting lineage markers, chemokine receptors, cytokine receptors, activation and co-stimulatory molecules were used. The malignant cells proved to express CD4+, CD56+ lineage negative leukemia phenotype characteristically positive for CD36, CD38, CD40, CD45, CD45RA, CD68, CD123, CD184, HLA-DR, BDCA2 and granzyme-B corresponding to the preplasmacitoid dendritic cell developmental stage. CONCLUSION - The presence of CD11a/CD18, CD84, CD91, CD95, αvβ5, CDw197 and the absence of CD52 and CD133 in this case can be regarded as additional features of malignant cells.]

Hungarian Immunology

[Immunological aspects in gastroenterology]

BENE László és munkatársai

All articles in the issue

Related contents

Lege Artis Medicinae

[HUMAN DENDRITIC CELLS AND INFECTIVE AGENTS]

KIS Zoltán

[Dendritic cells represent important components of the innate and adaptive immune responses. Human dendritic cells can be divided into two major subsets: myeloid and plasmacytoid (lymphoid) dendritic cells. The unique function of the dendritic cells is to capture antigens, present and to activate the antigenic peptides to the T lymphocytes. Dendritic cells go through a maturation process both in vitro and in vivo. By the use of pathogenrecognition- receptors the immature dendritic cells sense diverse pathogens or their various components, or cellular factors produced by the infected neighboring non-dendritic cells, and maturation signals are transduced for the dendritic cells. The heterogeneity of the pathogen-recognition-receptors and the microbial stimuli initiate a broad range of interactions between dendritic cells and infectious agents. Dendritic cells infected with certain viruses produce only a few infectious particles, but express and present viral antigens to T lymphocytes and immune response is initiated (influenza virus). Dendritic cells infected with certain pathogens not only initiate immune response but also disseminate the pathogen (human immunodeficiency virus, Mycobacterium tuberculosis). Some pathogens are killed in the dendritic cells, but the antigens are presented to the T cells, and immune responses are induced (Chlamydia trachomatis and Chlamydia psittaci). Dendritic cells capture antigens produced by infected neighbouring cells and present them to T lymphocytes, thus immune response is initiated (human cyto-megalovirus, herpes simplex virus). Dendritic cells are responsible for virus-induced immunosupp-ression; dendritic cells infected with certain pathogens form syncytia with T cells, thereby contribute to the suppression of T cell functions directed against opportunistic infections (measles virus). Dendritic cells can present not only foreign antigens but also self-antigens and when immature dendritic cells become mature upon exposure to inflammatory processes or to pathogens capable of activating them they can induce autoimmunity.]

Clinical Neuroscience

Late simultaneous carcinomatous meningitis, temporal bone infiltrating macro-metastasis and disseminated multi-organ micro-metastases presenting with mono-symptomatic vertigo – a clinico-pathological case reporT

JARABIN András János, KLIVÉNYI Péter, TISZLAVICZ László, MOLNÁR Anna Fiona, GION Katalin, FÖLDESI Imre, KISS Geza Jozsef, ROVÓ László, BELLA Zsolt

Although vertigo is one of the most common complaints, intracranial malignant tumors rarely cause sudden asymmetry between the tone of the vestibular peripheries masquerading as a peripheral-like disorder. Here we report a case of simultaneous temporal bone infiltrating macro-metastasis and disseminated multi-organ micro-metastases presenting as acute unilateral vestibular syndrome, due to the reawakening of a primary gastric signet ring cell carcinoma. Purpose – Our objective was to identify those pathophysiological steps that may explain the complex process of tumor reawakening, dissemination. The possible causes of vestibular asymmetry were also traced. A 56-year-old male patient’s interdisciplinary medical data had been retrospectively analyzed. Original clinical and pathological results have been collected and thoroughly reevaluated, then new histological staining and immunohistochemistry methods have been added to the diagnostic pool. During the autopsy the cerebrum and cerebellum was edematous. The apex of the left petrous bone was infiltrated and destructed by a tumor mass of 2x2 cm in size. Histological reexamination of the original gastric resection specimen slides revealed focal submucosal tumorous infiltration with a vascular invasion. By immunohistochemistry mainly single infiltrating tumor cells were observed with Cytokeratin 7 and Vimentin positivity and partial loss of E-cadherin staining. The subsequent histological examination of necropsy tissue specimens confirmed the disseminated, multi-organ microscopic tumorous invasion. Discussion – It has been recently reported that the expression of Vimentin and the loss of E-cadherin is significantly associated with advanced stage, lymph node metastasis, vascular and neural invasion and undifferentiated type with p<0.05 significance. As our patient was middle aged and had no immune-deficiency, the promoting factor of the reawakening of the primary GC malignant disease after a 9-year-long period of dormancy remained undiscovered. The organ-specific tropism explained by the “seed and soil” theory was unexpected, due to rare occurrence of gastric cancer to metastasize in the meninges given that only a minority of these cells would be capable of crossing the blood brain barrier. Patients with past malignancies and new onset of neurological symptoms should alert the physician to central nervous system involvement, and the appropriate, targeted diagnostic and therapeutic work-up should be established immediately. Targeted staining with specific antibodies is recommended. Recent studies on cell lines indicate that metformin strongly inhibits epithelial-mesenchymal transition of gastric cancer cells. Therefore, further studies need to be performed on cases positive for epithelial-mesenchymal transition.

Clinical Neuroscience

[The Comprehensive Aphasia Test in Hungarian]

ZAKARIÁS Lilla, RÓZSA Sándor, LUKÁCS Ágnes

[In this paper we present the Comprehensive Aphasia Test-Hungarian (CAT-H; Zakariás and Lukács, in preparation), an assessment tool newly adapted to Hungarian, currently under standardisation. The test is suitable for the assessment of an acquired language disorder, post-stroke aphasia. The aims of this paper are to present 1) the main characteristics of the test, its areas of application, and the process of the Hungarian adaptation and standardisation, 2) the first results from a sample of Hungarian people with aphasia and healthy controls. Ninety-nine people with aphasia, mostly with unilateral, left hemisphere stroke, and 19 neurologically intact control participants were administered the CAT-H. In addition, we developed a questionnaire assessing demographic and clinical information. The CAT-H consists of two parts, a Cognitive Screening Test and a Language Test. People with aphasia performed significantly worse than the control group in all language and almost all cognitive subtests of the CAT-H. Consistent with our expectations, the control group performed close to ceiling in all subtests, whereas people with aphasia exhibited great individual variability both in the language and the cognitive subtests. In addition, we found that age, time post-onset, and type of stroke were associated with cognitive and linguistic abilities measured by the CAT-H. Our results and our experiences clearly show that the CAT-H provides a comprehensive profile of a person’s impaired and intact language abilities and can be used to monitor language recovery as well as to screen for basic cognitive deficits in aphasia. We hope that the CAT-H will be a unique resource for rehabilitation professionals and aphasia researchers in aphasia assessment and diagnostics in Hungary. ]

Lege Artis Medicinae

[Second game, 37th move and Fourth game 78th move]

VOKÓ Zoltán

[What has Go to do with making clinical decisions? One of the greatest intellectual challenges of bedside medicine is making decisions under uncertainty. Besides the psychological traps of traditionally intuitive and heuristic medical decision making, lack of information, scarce resources and characteristics of doctor-patient relationship contribute equally to this uncertainty. Formal, mathematical model based analysis of decisions used widely in developing clinical guidelines and in health technology assessment provides a good tool in theoretical terms to avoid pitfalls of intuitive decision making. Nevertheless it can be hardly used in individual situations and most physicians dislike it as well. This method, however, has its own limitations, especially while tailoring individual decisions, under inclusion of potential lack of input data used for calculations, or its large imprecision, and the low capability of the current mathematical models to represent the full complexity and variability of processes in complex systems. Nevertheless, clinical decision support systems can be helpful in the individual decision making of physicians if they are well integrated in the health information systems, and do not break down the physicians’ autonomy of making decisions. Classical decision support systems are knowledge based and rely on system of rules and problem specific algorithms. They are utilized widely from health administration to image processing. The current information revolution created the so-called artificial intelligence by machine learning methods, i.e. machines can learn indeed. This new generation of artificial intelligence is not based on particular system of rules but on neuronal networks teaching themselves by huge databases and general learning algorithms. This type of artificial intelligence outperforms humans already in certain fields like chess, Go, or aerial combat. Its development is full of challenges and threats, while it presents a technological breakthrough, which cannot be stopped and will transform our world. Its development and application has already started also in the healthcare. Health professionals must participate in this development to steer it into the right direction. Lee Sedol, 18-times Go world champion retired three years after his historical defeat from AlphaGo artificial intelligence, be­cause “Even if I become the No. 1, there is an entity that cannot be defeated”. It is our great luck that we do not need to compete or defeat it, we must ensure instead that it would be safe and trustworthy, and in collaboration with humans this entity would make healthcare more effective and efficient. ]