Lege Artis Medicinae

[Primary haemostasis in atherothrombotic processes]

UDVARDY Miklós

JULY 10, 2001

Lege Artis Medicinae - 2001;11(06-07)

[It is now generally accepted, that the majority (>90%) of acute coronary and carotid syndromes are caused by thrombosis secondary to atheromatous plaque disruption, and approximately 75% of stroke cases are also of thrombotic origin. The prothrombotic changes in blood coagulation and in the primary haemostatic system may contribute substantially to the risk of occlusive arterial thrombotic events. The imbalance in the endothelium-platelet interaction seems to play crucial role in vessel wall response to injuries. Careful and complex analysis of platelet and clotting alterations may result in better understanding of arterial thrombotic processes and also in greater success of primary and secondary prevention by accelerating the development of better antithrombotic drugs.]

COMMENTS

0 comments

Further articles in this publication

Lege Artis Medicinae

[Physicians and health authorities]

BALÁZS Péter

Lege Artis Medicinae

[Grafics of Gábor Roskó]

Lege Artis Medicinae

[How to „conjugate” our patients in the medical language?]

GRÉTSY Zsombor

Lege Artis Medicinae

[Simple statistic methods II.]

HAJTMAN Béla

Lege Artis Medicinae

[Attitude of nurses and medical students toward death and dying]

HEGEDÛS Katalin, PILLING János, KOLOSAI Nedda, BOGNÁR Tamás

All articles in the issue

Related contents

Clinical Neuroscience

Late simultaneous carcinomatous meningitis, temporal bone infiltrating macro-metastasis and disseminated multi-organ micro-metastases presenting with mono-symptomatic vertigo – a clinico-pathological case reporT

JARABIN András János, KLIVÉNYI Péter, TISZLAVICZ László, MOLNÁR Anna Fiona, GION Katalin, FÖLDESI Imre, KISS Geza Jozsef, ROVÓ László, BELLA Zsolt

Although vertigo is one of the most common complaints, intracranial malignant tumors rarely cause sudden asymmetry between the tone of the vestibular peripheries masquerading as a peripheral-like disorder. Here we report a case of simultaneous temporal bone infiltrating macro-metastasis and disseminated multi-organ micro-metastases presenting as acute unilateral vestibular syndrome, due to the reawakening of a primary gastric signet ring cell carcinoma. Purpose – Our objective was to identify those pathophysiological steps that may explain the complex process of tumor reawakening, dissemination. The possible causes of vestibular asymmetry were also traced. A 56-year-old male patient’s interdisciplinary medical data had been retrospectively analyzed. Original clinical and pathological results have been collected and thoroughly reevaluated, then new histological staining and immunohistochemistry methods have been added to the diagnostic pool. During the autopsy the cerebrum and cerebellum was edematous. The apex of the left petrous bone was infiltrated and destructed by a tumor mass of 2x2 cm in size. Histological reexamination of the original gastric resection specimen slides revealed focal submucosal tumorous infiltration with a vascular invasion. By immunohistochemistry mainly single infiltrating tumor cells were observed with Cytokeratin 7 and Vimentin positivity and partial loss of E-cadherin staining. The subsequent histological examination of necropsy tissue specimens confirmed the disseminated, multi-organ microscopic tumorous invasion. Discussion – It has been recently reported that the expression of Vimentin and the loss of E-cadherin is significantly associated with advanced stage, lymph node metastasis, vascular and neural invasion and undifferentiated type with p<0.05 significance. As our patient was middle aged and had no immune-deficiency, the promoting factor of the reawakening of the primary GC malignant disease after a 9-year-long period of dormancy remained undiscovered. The organ-specific tropism explained by the “seed and soil” theory was unexpected, due to rare occurrence of gastric cancer to metastasize in the meninges given that only a minority of these cells would be capable of crossing the blood brain barrier. Patients with past malignancies and new onset of neurological symptoms should alert the physician to central nervous system involvement, and the appropriate, targeted diagnostic and therapeutic work-up should be established immediately. Targeted staining with specific antibodies is recommended. Recent studies on cell lines indicate that metformin strongly inhibits epithelial-mesenchymal transition of gastric cancer cells. Therefore, further studies need to be performed on cases positive for epithelial-mesenchymal transition.

Clinical Neuroscience

[The role of sleep in the relational memory processes ]

CSÁBI Eszter, ZÁMBÓ Ágnes, PROKECZ Lídia

[A growing body of evidence suggests that sleep plays an essential role in the consolidation of different memory systems, but less is known about the beneficial effect of sleep on relational memory processes and the recognition of emotional facial expressions, however, it is a fundamental cognitive skill in human everyday life. Thus, the study aims to investigate the effect of timing of learning and the role of sleep in relational memory processes. 84 young adults (average age: 22.36 (SD: 3.22), 21 male/63 female) participated in our study, divided into two groups: evening group and morning group indicating the time of learning. We used the face-name task to measure relational memory and facial expression recognition. There were two sessions for both groups: the immediate testing phase and the delayed retesting phase, separated by 24 hours. 84 young adults (average age: 22.36 (SD: 3.22), 21 male/63 female) participated in our study, divided into two groups: evening group and morning group indicating the time of learning. We used the face-name task to measure relational memory and facial expression recognition. There were two sessions for both groups: the immediate testing phase and the delayed retesting phase, separated by 24 hours. Our results suggest that the timing of learning and sleep plays an important role in the stabilizing process of memory representation to resist against forgetting.]

Clinical Neuroscience

[The connection between the socioeconomic status and stroke in Budapest]

VASTAGH Ildikó, SZŐCS Ildikó, OBERFRANK Ferenc, AJTAY András, BERECZKI Dániel

[The well-known gap bet­ween stroke mortality of Eastern and Western Euro­pean countries may reflect the effect of socioeconomic diffe­rences. Such a gap may be present between neighborhoods of different wealth within one city. We set forth to compare age distribution, incidence, case fatality, mortality, and risk factor profile of stroke patients of the poorest (District 8) and wealthiest (District 12) districts of Budapest. We synthesize the results of our former comparative epidemiological investigations focusing on the association of socioeconomic background and features of stroke in two districts of the capital city of Hungary. The “Budapest District 8–12 project” pointed out the younger age of stroke patients of the poorer district, and established that the prevalence of smoking, alcohol-consumption, and untreated hypertension is also higher in District 8. The “Six Years in Two Districts” project involving 4779 patients with a 10-year follow-up revealed higher incidence, case fatality and mortality of stroke in the less wealthy district. The younger patients of the poorer region show higher risk-factor prevalence, die younger and their fatality grows faster during long-term follow-up. The higher prevalence of risk factors and the higher fatality of the younger age groups in the socioeconomically deprived district reflect the higher vulnerability of the population in District 8. The missing link between poverty and stroke outcome seems to be lifestyle risk-factors and lack of adherence to primary preventive efforts. Public health campaigns on stroke prevention should focus on the young generation of socioeconomi­cally deprived neighborhoods. ]

Clinical Neuroscience

Neuroscience highlights: Main cell types underlying memory and spatial navigation

KRABOTH Zoltán, KÁLMÁN Bernadette

Interest in the hippocampal formation and its role in navigation and memory arose in the second part of the 20th century, at least in part due to the curious case of Henry G. Molaison, who underwent brain surgery for intractable epilepsy. The temporal association observed between the removal of his entorhinal cortex along with a significant part of hippocampus and the developing severe memory deficit inspired scientists to focus on these regions. The subsequent discovery of the so-called place cells in the hippocampus launched the description of many other functional cell types and neuronal networks throughout the Papez-circuit that has a key role in memory processes and spatial information coding (speed, head direction, border, grid, object-vector etc). Each of these cell types has its own unique characteristics, and together they form the so-called “Brain GPS”. The aim of this short survey is to highlight for practicing neurologists the types of cells and neuronal networks that represent the anatomical substrates and physiological correlates of pathological entities affecting the limbic system, especially in the temporal lobe. For that purpose, we survey early discoveries along with the most relevant neuroscience observations from the recent literature. By this brief survey, we highlight main cell types in the hippocampal formation, and describe their roles in spatial navigation and memory processes. In recent decades, an array of new and functionally unique neuron types has been recognized in the hippocampal formation, but likely more remain to be discovered. For a better understanding of the heterogeneous presentations of neurological disorders affecting this anatomical region, insights into the constantly evolving neuroscience behind may be helpful. The public health consequences of diseases that affect memory and spatial navigation are high, and grow as the population ages, prompting scientist to focus on further exploring this brain region.

Lege Artis Medicinae

[Second game, 37th move and Fourth game 78th move]

VOKÓ Zoltán

[What has Go to do with making clinical decisions? One of the greatest intellectual challenges of bedside medicine is making decisions under uncertainty. Besides the psychological traps of traditionally intuitive and heuristic medical decision making, lack of information, scarce resources and characteristics of doctor-patient relationship contribute equally to this uncertainty. Formal, mathematical model based analysis of decisions used widely in developing clinical guidelines and in health technology assessment provides a good tool in theoretical terms to avoid pitfalls of intuitive decision making. Nevertheless it can be hardly used in individual situations and most physicians dislike it as well. This method, however, has its own limitations, especially while tailoring individual decisions, under inclusion of potential lack of input data used for calculations, or its large imprecision, and the low capability of the current mathematical models to represent the full complexity and variability of processes in complex systems. Nevertheless, clinical decision support systems can be helpful in the individual decision making of physicians if they are well integrated in the health information systems, and do not break down the physicians’ autonomy of making decisions. Classical decision support systems are knowledge based and rely on system of rules and problem specific algorithms. They are utilized widely from health administration to image processing. The current information revolution created the so-called artificial intelligence by machine learning methods, i.e. machines can learn indeed. This new generation of artificial intelligence is not based on particular system of rules but on neuronal networks teaching themselves by huge databases and general learning algorithms. This type of artificial intelligence outperforms humans already in certain fields like chess, Go, or aerial combat. Its development is full of challenges and threats, while it presents a technological breakthrough, which cannot be stopped and will transform our world. Its development and application has already started also in the healthcare. Health professionals must participate in this development to steer it into the right direction. Lee Sedol, 18-times Go world champion retired three years after his historical defeat from AlphaGo artificial intelligence, be­cause “Even if I become the No. 1, there is an entity that cannot be defeated”. It is our great luck that we do not need to compete or defeat it, we must ensure instead that it would be safe and trustworthy, and in collaboration with humans this entity would make healthcare more effective and efficient. ]