Clinical Neuroscience


ZELENA Dóra1, DOMOKOS Ágnes1, BARNA István1, CSABAI Katalin1, BAGDY György2, MAKARA B. Gábor1

MARCH 20, 2007

Clinical Neuroscience - 2007;60(03-04)

[Background and purpose - Vasopressin plays an important role in the hypothalamo-pituitary-adrenal axis regulation as well as in stress-related disorders. A common view suggested that the role of vasopressin is especially important during chronic stresses. Here we tested the hypothesis that vasopressin-deficient rats may be more resistant to the development of chronic hypothalamo-pituitary-adrenal axis hyperactivity after chronic mild stress. Methods - Male vasopressin deficient Brattleboro rats were compared to their heterozygous littermattes. Chronic mild stress consisted of different mild stimuli (e.g. wet cages, restraint) for 6 week. The corticosterone changes were followed by repeated tail cutting and organs and blood were collected from decapitated rats. Results - In controls, chronic mild stress resulted in symptoms of chronic stress state characterized by typical somatic (body weight reduction, thymus involution) and endocrine changes (resting plasma ACTH and corticosterone elevation and POMC mRNA elevation in anterior lobe of the pituitary). Unexpectedly, the lack of vasopressin could not influence any chronic mild stress-induced changes. Conclusion - Somatic changes and endocrine effects of chronic mild stress are similar in control and vasopressin deficient animals. This suggests that either vasopressin is not indispensable for activating the hypothalamo-pituitaryadrenal axis by chronic stress or the absence of vasopressin is compensated by other mediators (e.g. CRH) in Brattleboro rats.]


  1. Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
  2. National Institute of Psychiatry and Neurology, Budapest



Further articles in this publication

Clinical Neuroscience



[Dedication 2007;60(03-04)]

Clinical Neuroscience

[Editor’s note]


[Editor’s note 2007;60(03-04) ]

Clinical Neuroscience



[Based on data accumulated regarding the neuroprotective action of Proline-Rich-Peptide-1 (PRP-1, a fragment of neurophysin vasopressin associated hypothalamic glycoprotein consisting of 15 amino acid residues) on neurons survival and axons regeneration and taking into the account that LVV-Hemorphin-7 (LVV-H7, an opioid peptide, widely distributed in different cell types of various tissues of intact rats, including those of the nervous and immune systems) derived from the proteolitic processing of hemoglobin in response to adverse environmental and physiological conditions, possesses the anti-stressor properties, we used histochemistry, immunohistochemistry and electrophysiology to investigate the putative neuroprotective action of Central Asian Cobra Naja naja oxiana snake venom (NOX) on trauma-injured rats. ABC immunohistochemical method and histochemical method on detection of Ca2+- dependent acid phosphatase activity were used for the morpho-functional study. By recording the electrical activity of the signals from the single neurons in and below the SC injury place, NOX venom has been shown to result in the complete restoration of hypothalamic-spinal projections originated from ipsi- and contra-lateral PVN and SON to neurons of SC lumbar part. NOX prevented the scar formation, well observed two months after SC injury in the control rats, resulted in the regeneration of nerve fibers growing through the trauma region, survival of the PRP-1- and LVV-H7-immunoreactive (Ir) neurons, and increase of the PRP-1- and LVV-H7-Ir nerve fibers and astrocytes in the SC lesion region. NOX was suggested to exert the neuroprotective effect, involving the PRP-1 and LVV-H7 in the underlying mechanism of neuronal recovery.]

Clinical Neuroscience


BAHNER Udo, GEIGER Helmut, PALKOVITS Miklós, LENKEI Zsolt, LUFT C. Friedrich, HEIDLAND August

[To test the effect of dehydration on brain atrial natriuretic peptide (ANP) concentrations in areas important to salt appetite, water balance and cardiovascular regulation, we subjected rats to dehydration and rehydration and measured ANP concentration in 18 brain areas, as well as all relevant peripheral parameters. Water deprivation decreased body weight, blood pressure, urine volume, and plasma ANP, while it increased urine and plasma osmolality, angiotensin II, and vasopressin. ANP greatly increased in 17 and 18 brain areas (all cut cerebral cortex) by 24 h. Rehydration for 12 h corrected all changes evoked by dehydration, including elevated ANP levels in brain. We conclude that chronic dehydration results in increased ANP in brain areas important to salt appetite and water balance. These results support a role for ANP as a neuroregulatory substance that participates in salt and water balance.]

Clinical Neuroscience


BALI Balázs, NAGY Zoltán, KOVÁCS J. Krisztina

[Introduction - (-)Deprenyl is an irreversible inhibitor of type B monoamine oxidase (MAO-B), which is now used for treatment of Parkinson’s or Alzheimer’s diseases. Evidence suggests that the neuroprotective effect of deprenyl may not be related exclusively to the inhibition of the enzyme MAO-B. Methods - To test the impact of deprenyl on ischemiainduced changes in vitro, we followed the time course of propidium iodide (PI) uptake as an indicator of neuronal cell death as well as the expression of apoptotic factors in organotypic hippocampal slice cultures exposed to oxygen- glucose deprivation (OGD) for 45 min. Results - The first signs of neuronal death were detected 2 hours after OGD and were extended to all subfields of the hippocampus by 24 hours post-injury. Presence of deprenyl (10-9 M) significantly delayed the cell death induced by the insult. Exposure of control cultures to deprenyl significantly increased the abundance of Bcl-2 and Bcl-xl mRNAs as revealed by RT-PCR. OGD resulted in an elevation of anti-apoptotic factors, while the expression of pro-apoptotic bax remained unchanged. Conclusion - These data suggest that deprenyl is neuroprotective in an in vitro model of ischemia. Although deprenyl upregulates the expression of Bcl-2 under basal conditions, its effect on anti-apoptotic factors is not significantly manifested during OGD.]

All articles in the issue

Related contents

Lege Artis Medicinae

[Psychoendocrine aspects of chronic stress, depression and eating disorders]


[The brain is not only a central organ, but also a target of stress-related events. During chronic stress, many somatic and psychiatric disorders could be initiated by the decreased allostatic or adaptive abilities of the individual. The brain is involved in the regulation of stress-related events via hormones, neuropeptides, monoamines and cytokines. A number of endocrine diseases or hormonal changes are associated with behavioural, vegetative and emotional alterations, which occasionally lead to psychological disturbances, for example depression. The endocrine background is also reflected by the medical treatment of psychiatric patients, as demonstrated by the use of selective serotonin-reuptake inhibitors, and estrogen or levothyroxine substitution therapies. The psychiatric disorders presented here, such as the various forms of depression and eating disorders (anorexia and bulimia nervosa) are highlighted because of their frequencies and lifethreatening nature. By describing these disorders, we wish to aid their early diagnosis and treatment and to help incorporate them into everyday clinical practice.]

Clinical Neuroscience


MILAGROS Salas-Prato

[This article is a short personal recollection of Dr. Hans Selye (HS) and of his institute in order to show, first, why and how he influenced us; second, who he was as a person, human being, physician, scientist, professor, mentor; third, what was the structure and functioning of the Institut de mèdecine et chirurgie expèrimentales (IMCE) and fourth, what HS’ contributions and accomplishments were.]

Clinical Neuroscience

[Regulation of water transport in brain oedema]

DÓCZI Tamás, SCHWARCZ Attila, GALLYAS Ferenc, BOGNER Péter, PÁL József, SULYOK Endre, GÖMÖRI Éva, VAJDA Zsolt

[The study gives an overview on the regulation of cerebral water content and of brain volume. The molecular mechanisms of the development and resolution of various oedema forms are discussed in detail. The physiological and pathophysiological role of the recently discovered molecular water channel proteins aquaporin-1 (AQP1) and aquaporin-4 (AQP4) as well as the importance of central neuroendocrine regulation by vasopressin and atriopeptin are reviewed based on the relevant literature and personal studies. Quantitative water maps based on the combination of multicompartment- T2, diffusion weighted MRI and T1 studies have proven to be powerful tools for studying new drugs against brain oedema brought about by various neuropathological conditions and for testing their efficacy both in animal experimental and clinical conditions. Non-peptide vasopressin antagonists, atriopeptin agonists and drugs targeting AQP4 are potential new families of oedema-decreasing drugs.]

Clinical Neuroscience

[The transcription of the amyloid precursor protein and tryptophan 2,3-dioxygenase genes are increased by aging in the rat brain]

KÁLMÁN Sára, PÁKÁSKI Magdolna, SZŰCS Szabina, GARAB Dénes, DOMOKOS Ágnes, ZVARA Ágnes, PUSKÁS László, BAGDY György, ZELENA Dóra, KÁLMÁN János

[Aging itself is considered as a major risk factor of dementia. The prevalence of the Alzheimer’s disease (AD) is increasing exponentially after the age of 65 and doubles every 5 years. The major aim of our present research was to examine the effect of aging on the transcription of certain genes associated with neurodegenerative disorders in the rat brain. The influence of the vasopressin (VP) hormone was also examined in the same experimental paradigm. Age dependent transcriptional changes of the following four genes were examined in the cerebral cortex: the first was the gene of the amyloid precursor protein (APP) which is abnormally cleaved to toxic beta-amyloid fragments. These aggregated peptides are the major components of the senile plaques in the AD brain. The second one was the mitogen-activated protein kinase (MAPK1) gene. The MAPK is involved in the abnormal hyperphosphorylation of the tau-protein which results in aggregated neurofibrillary tangles. The beta-actin gene was the third one. The protein product of this gene is considered to be involved in synaptogenesis, neuronal plasticity and clinical conditions like depression and AD. The last one was the gene of the tryptophan 2,3-dioxygenase (TDO2) enzyme. The activity of this enzyme is considered as a rate limiting factor in the metabolism of the neuro-immune modulator quinolinic acid (QUIN). The transciptional activity of young (2.5 months) and aged (13 months) Brattleboro rats with or without VP expression were compared by means of real time PCR technique. The cortical transciptional activity of the APP and TDO2 genes were increased in the aged animals as compared with the activity of the young ones, and this effect was independent on the presence of the VP. Our results indicate the importance of certain age dependent transcriptional changes might influence the mechanism of AD and other neurodegenerative disorders.]