Clinical Neuroscience

[Role of deep brain stimulation in epilepsy]

JANSZKY József, BALÁS István, KOVÁCS Norbert

SEPTEMBER 23, 2011

Clinical Neuroscience - 2011;64(09-10)

[The deep brain stimulation (DBS) is an emerging treatment option in brain disorders in which randomized multicenter trials proved its efficacy leading to licensing different DBS methods in various brain diseases. More recently more and more brain structures have become candidates for being “target” in a possible DBS treatment of epilepsy. At present, only the DBS of the anterior nucleus of the thalamus (ANT) can be considered as a proved method for epilepsy treatment. Other potential targets for DBS treatment in epilepsy are the subthalamic nuclei, and the amygdala- hippocampus complex. There are some ongoing randomized studies to investigating their therapeutical role. The therapeutical outcome of ANT-DBS treatment in drug-resistant epilepsy seems to be better than the new antiepileptic drugs, but much worse than the results of a potential epilepsy surgery. At about 10% of patients may become seizure-free and 50% of patients may have a significant improvement. Nowadays ANT-DBS should be considered as an “ultima ratio” in those adult drug-resistant epilepsy patients with normal intelligence in which neither new antiepileptic drugs nor resective epilepsy surgery are a reasonable therapeutical options.]

COMMENTS

0 comments

Further articles in this publication

Clinical Neuroscience

[Functional magnetic resonance imaging for cortical mapping in epilepsy]

KOZÁK Lajos Rudolf, TÓTH Vivien, BARSI Péter, RUDAS Gábor

[It is not only the total curative resection of pathological tissue or the minimization of symptoms to be considered in epilepsy surgery or other neurosurgical procedures, it is equally desirable to maintain the best possible quality of life. Cortical mapping methods can help achieve this goal by delineating eloquent areas, i.e. brain regions that are vital for providing an acceptable quality of life, albeit not prone to compensatory reorganization. These areas include among others the Broca and Wernicke regions for speech, the primary motor, sensory and visual cortices. Functional MRI gained importance in the last decade as a non-invasive clinical cortical mapping technique. This method is capable of localizing cortical areas selectively activated by a given task condition. Thus, selecting appropriate tasks can help mapping eloquent brain regions. Using functional MRI provides information that is complementary to other mapping methods. Moreover, it can replace invasive methods such as the Wada test. Here, we explain the background of functional MRI, compare it to other clinical mapping methods, explain the intricacies of paradigm selection, and show the limitations of the technique while also pointing out alternative uses.]

Clinical Neuroscience

[Magnetic resonance measuring and analitic methods in epilepsy]

BARSI Péter

[Neuroradiology and magnetic resonance imaging (MRI) as its leading tool play a basic role in the diagnostics of epilepsy. The result of the MRI examination is of utmost importance in patients with therapy resistent focal epilepsy possibly requiring neurosurgical intervention. Based on the continuously developing MRI techniques, we can use an optimal imaging protocol. Cerebral structures can be evaluated on a microanatomical level on high-resolution images with thin slices. The three-dimensional (3D) sequence has high spatial resolution, properly distinguishes cerebral grey and white matter, provides the possibility of surface rendering and volumetry, as well as an anatomical basis for other methods like tractography, functional MRI and neuronavigation. Diffusion weighted and diffusion tensor imaging (DWI, DTI) and tractography has an important role in differential diagnostics and tractography visualizes the main white matter tracts and their relation with brain pathologies. MR perfusion (MRP) provides help in differential diagnostics and may have a future role in the determination of the epileptogenic focus in multifocal pathologies. MR spectroscopy (MRS) is important in differential diagnostics, lateralization of focal epilepsy and in the confirmation of hippocampal sclerosis. Several of these methods need special hardware, software and expertise, but the basic MRI protocol for epilepsy can be implemented in all modern MR scanners of middle or high field strength.]

Clinical Neuroscience

[LORETA (Low Resolution Electromagnetic Tomography): A three-dimensional EEG source localization method]

CLEMENS Béla

[The author presents a brief overview of the EEG source localization method LORETA (Low Resolution Electromagnetic Tomography) with special reference to the not widely discussed data.]

Clinical Neuroscience

[The methodology and objectives of registrating high frequency oscillation in epilepsy]

CLEMENS Zsófia

[Technological advances in digital EEG allowed the recording the full frequency band of the EEG. Activity beyond the traditional 0.3-70 Hz band reflects both physiological and pathological processes. High frequency activity recorded from the epileptic brain has been related to both epileptogenicity and epileptogenesis. The article reviews research avenues, clinical applications, and the methodology of detecting and quantifying high frequency activity.]

Clinical Neuroscience

[Prolonged EEG-monitoring]

HALÁSZ Péter

[Prolonged EEG monitoring and video-EEG monitoring are basic methods on the level of epilepsy centers. These methods are able to make differences between epilepsy and non epileptic paroxysmal manifestations like psychogenic non epileptic seizures, parasomniac phenomena, narcolepsy. The application of the method, at least the video-EEG variant, needs team work, high level organisation, highly educated staff and high tech electrographic devices. Running the method even with these requirements is beneficial from the cost-benefit aspect as well.]

All articles in the issue

Related contents

Clinical Neuroscience

Late simultaneous carcinomatous meningitis, temporal bone infiltrating macro-metastasis and disseminated multi-organ micro-metastases presenting with mono-symptomatic vertigo – a clinico-pathological case reporT

JARABIN András János, KLIVÉNYI Péter, TISZLAVICZ László, MOLNÁR Anna Fiona, GION Katalin, FÖLDESI Imre, KISS Geza Jozsef, ROVÓ László, BELLA Zsolt

Although vertigo is one of the most common complaints, intracranial malignant tumors rarely cause sudden asymmetry between the tone of the vestibular peripheries masquerading as a peripheral-like disorder. Here we report a case of simultaneous temporal bone infiltrating macro-metastasis and disseminated multi-organ micro-metastases presenting as acute unilateral vestibular syndrome, due to the reawakening of a primary gastric signet ring cell carcinoma. Purpose – Our objective was to identify those pathophysiological steps that may explain the complex process of tumor reawakening, dissemination. The possible causes of vestibular asymmetry were also traced. A 56-year-old male patient’s interdisciplinary medical data had been retrospectively analyzed. Original clinical and pathological results have been collected and thoroughly reevaluated, then new histological staining and immunohistochemistry methods have been added to the diagnostic pool. During the autopsy the cerebrum and cerebellum was edematous. The apex of the left petrous bone was infiltrated and destructed by a tumor mass of 2x2 cm in size. Histological reexamination of the original gastric resection specimen slides revealed focal submucosal tumorous infiltration with a vascular invasion. By immunohistochemistry mainly single infiltrating tumor cells were observed with Cytokeratin 7 and Vimentin positivity and partial loss of E-cadherin staining. The subsequent histological examination of necropsy tissue specimens confirmed the disseminated, multi-organ microscopic tumorous invasion. Discussion – It has been recently reported that the expression of Vimentin and the loss of E-cadherin is significantly associated with advanced stage, lymph node metastasis, vascular and neural invasion and undifferentiated type with p<0.05 significance. As our patient was middle aged and had no immune-deficiency, the promoting factor of the reawakening of the primary GC malignant disease after a 9-year-long period of dormancy remained undiscovered. The organ-specific tropism explained by the “seed and soil” theory was unexpected, due to rare occurrence of gastric cancer to metastasize in the meninges given that only a minority of these cells would be capable of crossing the blood brain barrier. Patients with past malignancies and new onset of neurological symptoms should alert the physician to central nervous system involvement, and the appropriate, targeted diagnostic and therapeutic work-up should be established immediately. Targeted staining with specific antibodies is recommended. Recent studies on cell lines indicate that metformin strongly inhibits epithelial-mesenchymal transition of gastric cancer cells. Therefore, further studies need to be performed on cases positive for epithelial-mesenchymal transition.

Clinical Neuroscience

[The role of sleep in the relational memory processes ]

CSÁBI Eszter, ZÁMBÓ Ágnes, PROKECZ Lídia

[A growing body of evidence suggests that sleep plays an essential role in the consolidation of different memory systems, but less is known about the beneficial effect of sleep on relational memory processes and the recognition of emotional facial expressions, however, it is a fundamental cognitive skill in human everyday life. Thus, the study aims to investigate the effect of timing of learning and the role of sleep in relational memory processes. 84 young adults (average age: 22.36 (SD: 3.22), 21 male/63 female) participated in our study, divided into two groups: evening group and morning group indicating the time of learning. We used the face-name task to measure relational memory and facial expression recognition. There were two sessions for both groups: the immediate testing phase and the delayed retesting phase, separated by 24 hours. 84 young adults (average age: 22.36 (SD: 3.22), 21 male/63 female) participated in our study, divided into two groups: evening group and morning group indicating the time of learning. We used the face-name task to measure relational memory and facial expression recognition. There were two sessions for both groups: the immediate testing phase and the delayed retesting phase, separated by 24 hours. Our results suggest that the timing of learning and sleep plays an important role in the stabilizing process of memory representation to resist against forgetting.]

Hypertension and nephrology

[Association between cyclothymic affective temperament and hypertension]

NEMCSIK János, BATTA Dóra, KŐRÖSI Beáta, RIHMER Zoltán

[Affective temperaments (cyclothymic, hypertymic, depressive, anxious, irritable) are stable parts of personality and after adolescent only their minor changes are detectable. Their connections with psychopathology is well-described; depressive temperament plays role in major depression, cyclothymic temperament in bipolar II disorder, while hyperthymic temperament in bipolar I disorder. Moreover, scientific data of the last decade suggest, that affective temperaments are also associated with somatic diseases. Cyclothymic temperament is supposed to have the closest connection with hypertension. The prevalence of hypertension is higher parallel with the presence of dominant cyclothymic affective temperament and in this condition the frequency of cardiovascular complications in hypertensive patients was also described to be higher. In chronic hypertensive patients cyclothymic temperament score is positively associated with systolic blood pressure and in women with the earlier development of hypertension. The background of these associations is probably based on the more prevalent presence of common risk factors (smoking, obesity, alcoholism) with more pronounced cyclothymic temperament. The scientific importance of the research of the associations of personality traits including affective temperaments with somatic disorders can help in the identification of higher risk patient subgroups.]

Clinical Neuroscience

Atypical presentation of late-onset Sandhoff disease: a case report

SALAMON András , SZPISJAK László , ZÁDORI Dénes, LÉNÁRT István, MARÓTI Zoltán, KALMÁR Tibor , BRIERLEY M. H. Charlotte, DEEGAN B. Patrick , KLIVÉNYI Péter

Sandhoff disease is a rare type of hereditary (autosomal recessive) GM2-gangliosidosis, which is caused by mutation of the HEXB gene. Disruption of the β subunit of the hexosaminidase (Hex) enzyme affects the function of both the Hex-A and Hex-B isoforms. The severity and the age of onset of the disease (infantile or classic; juvenile; adult) depends on the residual activity of the enzyme. The late-onset form is characterized by diverse symptomatology, comprising motor neuron disease, ataxia, tremor, dystonia, psychiatric symptoms and neuropathy. A 36-year-old female patient has been presenting progressive, symmetrical lower limb weakness for 9 years. Detailed neurological examination revealed mild symmetrical weakness in the hip flexors without the involvement of other muscle groups. The patellar reflex was decreased on both sides. Laboratory tests showed no relevant alteration and routine electroencephalography and brain MRI were normal. Nerve conduction studies and electromyography revealed alterations corresponding to sensory neuropathy. Muscle biopsy demonstrated signs of mild neurogenic lesion. Her younger brother (32-year-old) was observed with similar symptoms. Detailed genetic study detected a known pathogenic missense mutation and a 15,088 base pair long known pathogenic deletion in the HEXB gene (NM_000521.4:c.1417G>A; NM_000521:c.-376-5836_669+1473del; double heterozygous state). Segregation analysis and hexosaminidase enzyme assay of the family further confirmed the diagnosis of late-onset Sandhoff disease. The purpose of this case report is to draw attention to the significance of late-onset Sandhoff disease amongst disorders presenting with proximal predominant symmetric lower limb muscle weakness in adulthood.

Clinical Neuroscience

Neuroscience highlights: The mirror inside our brain

KRABÓTH Zoltán, KÁLMÁN Bernadette

Over the second half of the 19th century, numerous theories arose concerning mechanisms involved in understanding of action, imitative learning, language development and theory of mind. These explorations gained new momentum with the discovery of the so called “mirror neurons”. Rizzolatti’s work inspired large groups of scientists seeking explanation in a new and hitherto unexplored area of how we perceive and understand the actions and intentions of others, how we learn through imitation to help our own survival, and what mechanisms have helped us to develop a unique human trait, language. Numerous studies have addressed these questions over the years, gathering information about mirror neurons themselves, their subtypes, the different brain areas involved in the mirror neuron system, their role in the above mentioned mechanisms, and the varying consequences of their dysfunction in human life. In this short review, we summarize the most important theories and discoveries that argue for the existence of the mirror neuron system, and its essential function in normal human life or some pathological conditions.