Clinical Neuroscience

[Hungarian Branch of the International League Against Epilepsy]

AUGUST 20, 2003

Clinical Neuroscience - 2003;56(07-08)

COMMENTS

0 comments

Further articles in this publication

Clinical Neuroscience

[6th National Congress of the Hungarian Stroke Society]

Clinical Neuroscience

[Positron emission tomography in presurgical localization of epileptic foci]

JUHÁSZ Csaba

[The success of cortical resection for intractable epilepsy of neocortical origin is highly dependent on the accurate presurgical delineation of the regions responsible for generating seizures. In addition to EEG and structural imaging studies, functional neuroimaging such as positron emission tomography (PET) can assist lateralization and localization of epileptogenic cortical areas. In the presented studies, objectively delineated focal PET abnormalities have been analyzed in patients (mostly children) with intractable epilepsy, using two different tracers: 2-deoxy-2-[18F]fluoro-D-glucose (FDG), that measures regional brain glucose metabolism, and [11C]flumazenil (FMZ), that binds to GABAA receptors. The PET abnormalities were correlated with scalp and intracranial EEG findings, structural brain abnormalities, as well as surgical outcome data. In patients with extratemporal foci and no lesion on MRI, FMZ PET was more sensitive than FDG PET for identification of the seizure onset zone defined by intracranial EEG monitoring. In contrast, seizures commonly originated from the border of hypometabolic cortex detected by FDG PET suggesting that such areas are most likely epileptogenic, and should be addressed if subdural EEG is applied to delineate epileptic cortex. In patients with cortical lesions, perilesional cortex with decreased FMZ binding was significantly smaller than corresponding areas of glucose hypometabolism, and correlated well with spiking cortex. Extent of perilesional hypometabolism, on the other hand, showed a correlation with the life-time number of seizures suggesting a seizurerelated progression of brain dysfunction. FMZ PET proved to be also very sensitive for detection of dual pathology (coexistence of an epileptogenic cortical lesion and hippocampal sclerosis). This has a major clinical importance since resection of both the cortical lesion and the atrophic hippocampus is required to achieve optimal surgical results. Finally, the author demonstrated that in patients with neocortical epilepsy, FDG PET abnormalities correctly regionalize the epileptogenic area, but their size is not related to the extent of epileptogenic tissue to be removed. In contrast, complete resection of cortex with decreased FMZ binding predicts good surgical outcome suggesting that application of FMZ PET can improve surgical results in selected patients with intractable epilepsy of neocortical origin.]

Clinical Neuroscience

[Report on a research project from abroad (EFNS)]

ERTSEY Csaba

Clinical Neuroscience

[Imaging of dopamine transporter with 99mTc-TRODAT-SPECT in movement disorders]

KANYÓ Balázs, ÁRGYELÁN Miklós, DIBÓ György, SZAKONYI Zsolt, VÉCSEI László, FÜLÖP Ferenc, LÁNCZ Adrienn, FORGÁCS Péter, PÁVICS László

[99mTc-TRODAT-1 is a new, technetium based radiopharmaceutical that selectively binds to the dopamine transporters. The aim of the study was to evaluate the dopamine transporter status in movement disorders. Methods - In eight healthy volunteers (age range 22-58 years), 28 patients with Parkinson’s disease (age range 42-80 years), 10 patients with Parkinsonian syndrome (age range 51-79 years) and 13 patients with essential tremor (age range 43-71 years) were 99mTc-TRODAT-SPECT tests performed. The results were evaluated visually and semiquantitatively. Results - The visual assessments were concordant with those of the semiquantitative in each case. The 99mTc- TRODAT uptake of the striatum was referenced to the cerebellum, the frontal and occipital cortex. The best deviation was found in aspect of the occipital cortex. The striatum/occipital ratio was the following: healthy volunteers: 2.12±0.27; Parkinson’s disease: 1.52±0.27; Parkinsonian syndrome: 1.57±0.26; essential tremor: 2.06±0.69. The striatal dopamine transporter availability was significantly lower in subjects with Parkinson's disease or Parkinsonian syndrome compared to the control subjects. There was no difference between healthy volunteers and patients with essential tremor. Using discriminant analysis, the discriminant function had significantly different values in the group of Parkinson’s disease than in Parkinsonian syndrome: f= -3.675×caud/occipit+6.293×put/occipit -2.548. Conclusion - 99mTc-TRODAT-SPECT is able to visualise the presynaptic dopaminergic degeneration. This method itself can be useful in differential diagnosis in some type of movement disorders.]

Clinical Neuroscience

[CONGRESS CALENDAR]

All articles in the issue

Related contents

Clinical Neuroscience

[The role of sleep in the relational memory processes ]

CSÁBI Eszter, ZÁMBÓ Ágnes, PROKECZ Lídia

[A growing body of evidence suggests that sleep plays an essential role in the consolidation of different memory systems, but less is known about the beneficial effect of sleep on relational memory processes and the recognition of emotional facial expressions, however, it is a fundamental cognitive skill in human everyday life. Thus, the study aims to investigate the effect of timing of learning and the role of sleep in relational memory processes. 84 young adults (average age: 22.36 (SD: 3.22), 21 male/63 female) participated in our study, divided into two groups: evening group and morning group indicating the time of learning. We used the face-name task to measure relational memory and facial expression recognition. There were two sessions for both groups: the immediate testing phase and the delayed retesting phase, separated by 24 hours. 84 young adults (average age: 22.36 (SD: 3.22), 21 male/63 female) participated in our study, divided into two groups: evening group and morning group indicating the time of learning. We used the face-name task to measure relational memory and facial expression recognition. There were two sessions for both groups: the immediate testing phase and the delayed retesting phase, separated by 24 hours. Our results suggest that the timing of learning and sleep plays an important role in the stabilizing process of memory representation to resist against forgetting.]

Clinical Neuroscience

[The Comprehensive Aphasia Test in Hungarian]

ZAKARIÁS Lilla, RÓZSA Sándor, LUKÁCS Ágnes

[In this paper we present the Comprehensive Aphasia Test-Hungarian (CAT-H; Zakariás and Lukács, in preparation), an assessment tool newly adapted to Hungarian, currently under standardisation. The test is suitable for the assessment of an acquired language disorder, post-stroke aphasia. The aims of this paper are to present 1) the main characteristics of the test, its areas of application, and the process of the Hungarian adaptation and standardisation, 2) the first results from a sample of Hungarian people with aphasia and healthy controls. Ninety-nine people with aphasia, mostly with unilateral, left hemisphere stroke, and 19 neurologically intact control participants were administered the CAT-H. In addition, we developed a questionnaire assessing demographic and clinical information. The CAT-H consists of two parts, a Cognitive Screening Test and a Language Test. People with aphasia performed significantly worse than the control group in all language and almost all cognitive subtests of the CAT-H. Consistent with our expectations, the control group performed close to ceiling in all subtests, whereas people with aphasia exhibited great individual variability both in the language and the cognitive subtests. In addition, we found that age, time post-onset, and type of stroke were associated with cognitive and linguistic abilities measured by the CAT-H. Our results and our experiences clearly show that the CAT-H provides a comprehensive profile of a person’s impaired and intact language abilities and can be used to monitor language recovery as well as to screen for basic cognitive deficits in aphasia. We hope that the CAT-H will be a unique resource for rehabilitation professionals and aphasia researchers in aphasia assessment and diagnostics in Hungary. ]

Lege Artis Medicinae

[Thiazide- or thiazide-like diuretics should be used in the treatment of patients with hypertension? Particularities of the situation in Hungary]

VÁLYI Péter

[Diuretics have remained the cornerstone of the antihypertensive treatment since their widespreading in the 1960s. According to the 2018 ESC/ESH Guidelines for the management of arterial hypertension, in the absence of evidence from direct comparator trials and recognizing that many of the approved single-pill combinations are based on hydrochlorothiazide, this drug and thiazide-like indapamide can be considered suitable antihypertensive agents. In the 2018 Hungarian guidelines indapamide is named as the most efficacious diuretic in the treatment of patients with hypertension. The aim of the publication is redefining thiazide- and thiazide-like diuretic use in the treatment of hypertensive patients, with particular attention to presently available hydrochlorothia­zide and indapamide, and their combination drugs in Hungary.]

Lege Artis Medicinae

[LAM 30: 1990–2020. Facing the mirror: Three decades of LAM, the Hungarian medicine and health care system]

KAPÓCS Gábor

Clinical Neuroscience

Neuroscience highlights: Main cell types underlying memory and spatial navigation

KRABOTH Zoltán, KÁLMÁN Bernadette

Interest in the hippocampal formation and its role in navigation and memory arose in the second part of the 20th century, at least in part due to the curious case of Henry G. Molaison, who underwent brain surgery for intractable epilepsy. The temporal association observed between the removal of his entorhinal cortex along with a significant part of hippocampus and the developing severe memory deficit inspired scientists to focus on these regions. The subsequent discovery of the so-called place cells in the hippocampus launched the description of many other functional cell types and neuronal networks throughout the Papez-circuit that has a key role in memory processes and spatial information coding (speed, head direction, border, grid, object-vector etc). Each of these cell types has its own unique characteristics, and together they form the so-called “Brain GPS”. The aim of this short survey is to highlight for practicing neurologists the types of cells and neuronal networks that represent the anatomical substrates and physiological correlates of pathological entities affecting the limbic system, especially in the temporal lobe. For that purpose, we survey early discoveries along with the most relevant neuroscience observations from the recent literature. By this brief survey, we highlight main cell types in the hippocampal formation, and describe their roles in spatial navigation and memory processes. In recent decades, an array of new and functionally unique neuron types has been recognized in the hippocampal formation, but likely more remain to be discovered. For a better understanding of the heterogeneous presentations of neurological disorders affecting this anatomical region, insights into the constantly evolving neuroscience behind may be helpful. The public health consequences of diseases that affect memory and spatial navigation are high, and grow as the population ages, prompting scientist to focus on further exploring this brain region.