Clinical Neuroscience

[PROJECTIONS OF VIP/PHI NEURONS OF THE INTERSTITIAL NUCLEUS OF CAJAL IN THE RAT]

FODOR Mariann, WILLIAM Rostène, ANNE Berod, BENCZE Viktória, PALKOVITS Miklós

MARCH 20, 2007

Clinical Neuroscience - 2007;60(03-04)

[Neurons expressing VIP/PHI precursor mRNA have been localized in the interstitial nucleus of Cajal. Unilateral surgical cut through the medial forebrain bundle failed to influence VIP/PHI mRNA expression in the Cajal nucleus while brainstem hemisection or unilateral transection of the medial longitudinal fascicle reduced it markedly, ipsilateral to the knife cuts. Thus, in contrast to forebrain projecting VIP neurons in the rostral periaqueductal gray, VIP/PHI neurons in the Cajal nucleus project downwards, to the lower brainstem.]

COMMENTS

0 comments

Further articles in this publication

Clinical Neuroscience

[Dedication]

PALKOVITS Miklós

[Dedication 2007;60(03-04)]

Clinical Neuroscience

[Editor’s note]

RAJNA Péter

[Editor’s note 2007;60(03-04) ]

Clinical Neuroscience

[PROTECTIVE ACTION OF SNAKE VENOM NAJA NAJA OXIANA AT SPINAL CORD HEMISECTION]

ABRAHAMYAN S. Silva, MELIKSETYAN B. Irina, CHAVUSHYAN A. Vergine, ALOYAN L. Mery, SARKISSIAN S. John

[Based on data accumulated regarding the neuroprotective action of Proline-Rich-Peptide-1 (PRP-1, a fragment of neurophysin vasopressin associated hypothalamic glycoprotein consisting of 15 amino acid residues) on neurons survival and axons regeneration and taking into the account that LVV-Hemorphin-7 (LVV-H7, an opioid peptide, widely distributed in different cell types of various tissues of intact rats, including those of the nervous and immune systems) derived from the proteolitic processing of hemoglobin in response to adverse environmental and physiological conditions, possesses the anti-stressor properties, we used histochemistry, immunohistochemistry and electrophysiology to investigate the putative neuroprotective action of Central Asian Cobra Naja naja oxiana snake venom (NOX) on trauma-injured rats. ABC immunohistochemical method and histochemical method on detection of Ca2+- dependent acid phosphatase activity were used for the morpho-functional study. By recording the electrical activity of the signals from the single neurons in and below the SC injury place, NOX venom has been shown to result in the complete restoration of hypothalamic-spinal projections originated from ipsi- and contra-lateral PVN and SON to neurons of SC lumbar part. NOX prevented the scar formation, well observed two months after SC injury in the control rats, resulted in the regeneration of nerve fibers growing through the trauma region, survival of the PRP-1- and LVV-H7-immunoreactive (Ir) neurons, and increase of the PRP-1- and LVV-H7-Ir nerve fibers and astrocytes in the SC lesion region. NOX was suggested to exert the neuroprotective effect, involving the PRP-1 and LVV-H7 in the underlying mechanism of neuronal recovery.]

Clinical Neuroscience

[CENTRAL ATRIAL NATRIURETIC PEPTIDE IN DEHYDRATION]

BAHNER Udo, GEIGER Helmut, PALKOVITS Miklós, LENKEI Zsolt, LUFT C. Friedrich, HEIDLAND August

[To test the effect of dehydration on brain atrial natriuretic peptide (ANP) concentrations in areas important to salt appetite, water balance and cardiovascular regulation, we subjected rats to dehydration and rehydration and measured ANP concentration in 18 brain areas, as well as all relevant peripheral parameters. Water deprivation decreased body weight, blood pressure, urine volume, and plasma ANP, while it increased urine and plasma osmolality, angiotensin II, and vasopressin. ANP greatly increased in 17 and 18 brain areas (all cut cerebral cortex) by 24 h. Rehydration for 12 h corrected all changes evoked by dehydration, including elevated ANP levels in brain. We conclude that chronic dehydration results in increased ANP in brain areas important to salt appetite and water balance. These results support a role for ANP as a neuroregulatory substance that participates in salt and water balance.]

Clinical Neuroscience

[OXYGEN-GLUCOSE DEPRIVATION-INDUCED CHANGES IN ORGANOTYPIC CULTURES OF THE RAT HIPPOCAMPUS]

BALI Balázs, NAGY Zoltán, KOVÁCS J. Krisztina

[Introduction - (-)Deprenyl is an irreversible inhibitor of type B monoamine oxidase (MAO-B), which is now used for treatment of Parkinson’s or Alzheimer’s diseases. Evidence suggests that the neuroprotective effect of deprenyl may not be related exclusively to the inhibition of the enzyme MAO-B. Methods - To test the impact of deprenyl on ischemiainduced changes in vitro, we followed the time course of propidium iodide (PI) uptake as an indicator of neuronal cell death as well as the expression of apoptotic factors in organotypic hippocampal slice cultures exposed to oxygen- glucose deprivation (OGD) for 45 min. Results - The first signs of neuronal death were detected 2 hours after OGD and were extended to all subfields of the hippocampus by 24 hours post-injury. Presence of deprenyl (10-9 M) significantly delayed the cell death induced by the insult. Exposure of control cultures to deprenyl significantly increased the abundance of Bcl-2 and Bcl-xl mRNAs as revealed by RT-PCR. OGD resulted in an elevation of anti-apoptotic factors, while the expression of pro-apoptotic bax remained unchanged. Conclusion - These data suggest that deprenyl is neuroprotective in an in vitro model of ischemia. Although deprenyl upregulates the expression of Bcl-2 under basal conditions, its effect on anti-apoptotic factors is not significantly manifested during OGD.]

All articles in the issue

Related contents

Lege Artis Medicinae

[Molecular morphological methods in laboratory medicine]

BALÁZS Margit, ÁDÁNY Róza

[Today, the increasing technical arsenal of molecular morphology has not only methodological importance, but also a revolutionary role in diagnostic laboratory medicine. Techniques previously used only in basic research have become widespread in routine diagnostics by now. The development of methodology for detection of genetic alterations has enabled laboratory tests not only to define disease associated pathobiochemical alterations, but also to identify the genetic background of diseases as well. Evolution of these methods caused qualitative changes not only in detection of disease specific alterations, but also in revealing increased individual susceptibility (sometimes at population level) indicating genetic predisposition to the disease. Recently, the classical methodology based on genetic microscopic morphology has been gradually supplemented or even replaced by different in situ hybridization techniques in many laboratories. Using these techniques chromosomal alterations in cells and tissues (including tumor cells) can be detected within one day (or maximum 1-2 days) without in vitro manipulation of cells. These improved techniques allow us to monitor chromosomal changes after the treatment of genetic diseases or define these alterations induced by environmental exposures.]

Clinical Neuroscience

[GLUTAMATERGIC PHENOTYPE OF HYPOTHALAMIC NEUROSECRETORY SYSTEMS: A NOVEL ASPECT OF CENTRAL NEUROENDOCRINE REGULATION]

HRABOVSZKY Erik, LIPOSITS Zsolt

[While three decades ago, the co-existence of classical neurotransmitters and peptide neuromodulators in a single neuronal cell was considered to be rather exceptional, the phenomenon that neurons have a complex transmitter phenotype now appears to be the general rule. Parvicellular and magnocellular neurosecretory systems consist of neuronal cells which are specialized in secreting peptide neurohormones into the blood-stream to regulate hypophyseal functions. This mini-review, dedicated to the memory of Mariann Fodor, summarizes the current knowledge about the classical neurotransmitter content of different hypothalamic neurosecretory systems, with a special focus on the occurrence and putative functions of glutamate in parvicellular and magnocellular neurosecretory cells.]

Clinical Neuroscience

Single-hole, ruptured parenchymal arteriovenous fistula of the mesencephalon: not known vascular malformation of the brain or a posthemorrhagic entity?

KULCSÁR Zsolt, MACHI Paolo, VARGAS Isabel Maria, SCHALLER Karl, LOVBLAD Olof Karl

The subtypes of brain arteriovenous malformations, with direct, single-hole fistulas without co-existing nidus are not described as existing entities inside the brain parenchyma but on the pial surface. True parenchymal arteriovenous malformations present with nidal structure, even if they are small, whereas surface lesions may present a direct fistulous configuration. In this case of midbrain haemorrhage a direct arteriovenous fistula was detected at the level of the red nucleus between a paramedian midbrain perforator artery and a paramedian parenchymal vein, with pseudo-aneurysm formation at the fistulous connection, without signs of adjacent nidus structure. The hypothesis whether a pre-existing arteriovenous fistula ruptured or a spontaneous haemorrhage has caused the fistulous connection is discussed.