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Áttekintjük a REM-parasomniák irodalmát, és röviden
foglalkozunk a hátterükben álló mechanizmussal. A cso-
port tagjainak egy része alvásdisszociációnak felel meg,
ahol a REM-alvás egyes elemei inadekvát fázisban
(például alvási paralysis, hypnagog hallucinációk) jelennek
meg, vagy fordítva, elmaradnak/töredékesek a REM-alvás
alatt, amelynek egyébként fiziológiás részei (REM-alvás
izomatónia nélkül,  a REM-magatartászavar hátterében
álló rendellenesség). 
A többi REM-parasomnia (alvásfüggô fájdalmas erectio,
catathrenia) hátterében egyéb, egyelôre tisztázatlan me -
chanizmus állhat. A REM-parasomniák alvászavart és
sérüléseket okozhatnak, és tanulmányozásuk meg vilá gít -
hatja a REM-alvás funkcióit és a parasomniák hátterében
álló sokszínû etio lógiát. A REM-magatartászavarnak
különleges jelentôsége van: neurodegeneratív betegségek,
különösen synuclei no pathiák elôjele (vagy kísérôje) lehet,
talán maga is az. Egyben modell-rendellenesség, ami
autoimmun, iatrogén és pszichoszomatikus zavarok fel tá -
rását teheti lehetôvé.

Kulcsszavak: REM-alvás, REM-parasomnia, 
REM-magatartászavar, synucleinopathia

We review the literature on REM parasomnias, and their
the underlying mechanisms. Several REM parasomnias 
are consistent with sleep dissociations, where certain ele-
ments of the REM sleep pattern emerge in an inadequate
time (sleep paralysis, hypnagogic hallucinations and 
cataplexy) or are absent/partial in their normal REM sleep
time (REM sleep without atonia, underlying REM sleep
behavior disorder). The rest of REM parasomnias (sleep
related painful erection, catathrenia) may have other still
unclear mechanisms. 
REM parasomnias deserve attention, because in addition
to disturbing sleep and causing injuries, they may shed
light on REM sleep functions as well as the heterogeneous
etiologies of parasomnias. One of them, REM sleep
behavior disorder has special importance as a warning
sign of evolving neurodegenerative conditions mainly
synucleinopathies (some cases synucleinopathies them-
selves) and it is a model parasomnia revealing that para-
somnias may have by autoimmune, iatrogenic and even
psychosomatic etiologies. 

Keywords: REM sleep, REM parasomnia, 
REM sleep behavior disorder, synucleinopathy

Correspondent: Dr. SZÛCS Anna, Semmelweis Egyetem, Magatartástudományi Intézet; 
1089 Budapest, Nagyvárad tér 4. Phone: 06303167606, e-mail: szucsan@gmail.com

Érkezett: 2021. június 24. Elfogadva: 2021. szeptember 26.

| English | https://doi.org/10.18071/isz.75.0171 | www.elitmed.hu

The International Classification of Sleep
Disorders (2014) defines parasomnias as

unusual movements, behaviors, autonomic phe-
nomena and dreams during sleep. They may co-
occur with other sleep disorders e.g. obstructive

sleep apnea syndrome, other parasomnias or epi -
lepsy1. Based on the hosting sleep stage, NREM-,
REM-sleep-related and other parasomnias are dis-
tinguished. We overview REM parasomnias focus-
ing on REM sleep behavior disorder (RBD).
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Physiology background

Sleep, regulated by intrinsic rhythm-generators and
environmental stimuli, is far from homogeneous. It
is composed of the cyclic alternation of non-rapid
eye movement (NREM) and rapid eye movement
(REM) sleep stages constituting the macrostructure
of sleep. Both REM and NREM sleep are under
homeostatic control2. REM sleep alternates phasic
and tonic phases3, 4 while NREM sleep contains
multi-level oscillations as the cyclic alternating pat-
tern (CAP), the alternation of slow wave up- and
down states and possibly shorter rhythms5. 

The pattern of REM sleep is made by the combi-
nation of striated muscle atonia, rapid eye move-
ments, dreaming, a desynchronized EEG activity,
“saw tooth” waves (STW), ponto-geniculo-occipi-
tal (PGO) discharges and rhythmic hippocampal
slow waves6.

The GABAergic inhibitory neurons in the dorso-
medial medulla (DmM) and the excitatory neurons
in the ventral medulla (VM; containing the GABA
synthesizing enzyme, glutamate decarboxylase -
GAD2) initiate and maintain REM sleep, possibly
through their projections to the dorsal and median
raphe (DR; MR). During NREM sleep, their acti -
vity synchronizes with the infraslow oscillations of
the EEG spindle band, modulating the latency of
REM sleep episodes. Thus, dorsomedial and ventral
medullary neurons promote REM sleep, and their
slow activity-changes may coordinate NREM-
REM sleep transitions7. 

STW are theta-range transients emerging from
the EEG background. They are joined by an
increase of variable frequency oscillations over
widespread cortical regions, suggesting an involve-
ment in cognitive processes8. 

PGO waves are biphasic field potentials known
in several mammalians including humans9. Pontine
P-waves (parts of PGO waves) couple with hip-
pocampal slow oscillations – theta in mice, delta in
humans. Together with the bursts of hippocampal
CA1 neurons, they may coordinate brainstem and
hippocampal activity and participate in sleep-relat-
ed neural plasticity10, 11.

A recent revolutionary discovery has identified
Gq-type muscarinic acetylcholine receptors (Chrm)
1 and 3 as ‘dream genes’; their knock-out resulted
in short-sleeper phenotypes and loss of REM
sleep12, 13.

PHASIC AND TONIC REM

Phasic REM sleep features muscle twitches, rapid
eye movements, PGO waves and dreaming. In tonic
REM sleep with even EEG activity, the awakening
threshold is lower and the evoked responses resem-
ble those in waking3, 14.

THE REM SLEEP NETWORK

Jouvet’s pioneer cat-brain trans-section experi-
ments15 have shown that the neural circuitry of
REM sleep nestles in the brainstem, mainly in the
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BDNF: brain-derived neurotrophic factor 
CA: cornu ammonis
CAP: cyclic alternating pattern
Chrm: muscarinic acetylcholine receptor
CeA: central amygdala
cLDTN: caudal laterodorsal tegmental nucleus
DLB: diffuse Lewy body disease
DmM: dorsomedial medulla 
DR: dorsal raphe
DTI: diffusion tensor imaging
EEG: electroencephalography
EMG: electromyography
GABA: γ-aminobutyric acid
HLA: human leucocyte antigen
LC: locus coeruleus
LH: lateral hypothalamic
LDT: laterodorsal tegmental (pontin)
LPT: lateral pontine tegmental
MCH: melanin-concentrating hormone 
MN: motoneuron

MR: median raphe
MRI: magnetic resonance imaging
NREM: non-REM
OX: orexin
PC: precoeruleus 
PD: Parkinson’s disease
PGO: ponto-geniculo-occipital 
PPT: pedunculo-pontin-tegmental
RBD: REM sleep behaviour disorder
REM: REM rapid eye movement 
RSWA: REM sleep without atonia
SLD: sublaterodorsal 
SSRI: selective serotonin reuptake inhibitor
SSNI: selective noradrenaline reuptake inhibitor
STW: saw tooth wave
SVH: spinal ventral horn 
TDP-43: transactive response DNA 43 kDA binding protein
vlPAG: ventro-lateral periaqueductal grey
VM: ventral medulla
VmM: ventromedial medulla

ABBREVIATIONS
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dorso-rostral pons. A REM on/off system regulates
REM through multiple ascending and descending
sleep trajectories16 (Figure 1). 

The rise of ACh from laterodorsal tegmental
(LDT) and pedunculopontine tegmental (PPT) neu-
rons promotes REM sleep through the activation of
REM-on glutamatergic sublaterodorsal (SLD) neu-
rons2. REM-on neurons’ activation (and concomi-
tant REM-off circuits’ inhibition) is supported by
the suspension of the tonic monoaminergic and
GABAergic inhibition present in wakefulness and
slow-wave sleep. SLD activity builds up the REM
sleep pattern throughout descending inhibitory sig-
nals generating muscle atonia and ascending activat-
ing pathways leading to cortical desynchronization. 

The melanin-concentrating hormone (MCH)
neurons in the lateral hypothalamus have maximal
activity during REM-sleep regulating it by the inhi-
bition of the REM-off GABAergic, histaminergic
and mono-aminergic neurons17, 18. Also the orexin

neurons of the lateral hypothalamus
stabilize REM sleep through their
receptors on 3/4 of SLD neurons,
increasing SLD’s downstream out-
put19.

REM SLEEP PRESSURE AND HOMEOSTASIS

REM homeostasis is at least partially
independent from the circadian clock21.
REM sleep pressure is mediated by a
brain-derived neurotrophic factor
(BDNF), accumulating after REM
sleep deprivation22. REM sleep depri-
vation links with changes in the hypo-
thalamic-pituitary-adrenal axis, meta-
bolic balance, thermoregulation and
the concentration of neurotransmitters
including steroid hormones and pro-
lactin23. 

REM SLEEP EVOLUTION AND ONTOGENESIS

DURING THE LIFE-SPAN

Humans sleep less (~7 hours) than
other primates, have a higher ratio of
REM/ NREM sleep (~1:3.5) and a
higher sleep efficiency. The luxury of
excess REM sleep may be related to
humans’ ‘earthbound’ sleeping (with
no risk of drop-downs due to REM-
atonia)24. It may contribute to the ma -
turation of networks for innovation,
creativity and ideation25. Interestingly,
REM sleep is reduced in astronauts in

weightless environment, suggesting a role of gravi-
ty in REM sleep regulation26.

REM sleep dynamics vary with aging. Neonatal
sleep begins with ‘active sleep’ (continuous mixed
fast activity with rapid eye movements and muscle
twitches) the precursor of REM sleep, alternating
with ‘quiet sleep’, the precursor of NREM sleep27.
Its amount declines in the first months/years, when
a regular alternation of NREM/REM sleep stages
builds up and wakefulness last longer. During
school-age, the amount of REM sleep declines fur-
ther, then it remains stable in adulthood undergoing
a slight reduction later28. 

The functions of REM sleep

REM sleep is believed to be strongly linked with
mood regulation, creative problem solving and
emotional memory consolidation29, 30.
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Figure 1. REM sleep network. The caudal laterodorsal tegmental
nucleus (cLDT), the sublaterodorsal (SLD) nucleus and precoeruleus
region (PC) comprise an executive pontine circuit element for REM
sleep. REM-on glutamatergic neurons of the ventral SLD mediate REM
motor atonia through direct synaptic activation of glycinergic
interneurons of the spinal ventral horn (SVH) as well as via
GABAergic/glycinergic neurons of the ventromedial medulla (VmM).
Lateral hypothalamic neurons containing orexin (OX) provide excita-
tory and stabilizing synaptic control over LPT neurons. Cholinergic
laterodorsal tegmental and pedunculopontine tegmental (LDT/PPT)
neurons may produce REM sleep through activation of REM-on SLD
neurons. Lateral hypothalamic (LH) neurons containing melanin-con-
centrating hormone (MCH) also regulate REM sleep, possibly through
direct inhibition of REM-off vlPAG/LPT neurons20
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While the low level of acetylcholine in NREM
sleep favors the communication of the dorsolateral
prefrontal cortex and the hippocampus sustaining
the transfer and consolidation of declarative memo-
ry traces31 , the high level of acetylcholine in REM
sleep promotes ‘emotion-driven memory-process-
ing’ in vol ving the amygdala, the anterior cingulate
and medial prefrontal cortices32 (Figure 2). The
consolidation of fear memories during REM sleep
possibly contributes to post-traumatic stress disor-
der (PTSD)33. REM sleep allows novel associations
based on the information learned in NREM sleep34.
Synaptic pruning and selection is likely linked to

REM sleep, too35. Dream reports can
be elicited after awakening from any
sleep stages, however, REM sleep is
considered the “dream-phase” with
longer dreams and more bizarre con-
tents compared to NREM sleep36. 

THE FUNCTION OF THE REM SLEEP-RELATED

MUSCLE ATONIA

The function of REM sleep-related
muscle atonia is mysterious. It certain-
ly protects the sleeper from acting out
dreams, and the suppression of motor
activities can outweigh certain poten-
tially sleep-disruptive stimuli. In this
regard, REM-dependent muscle atonia
is a sentinel of sleep resilience37. 

During RBD episodes, the rigid
muscle tone of Parkinson’s disease
(PD) patients normalizes38, suggesting
a correcting function of REM sleep for
normal waking muscle-tone. Similarly,
PD’s muscle rigidity parallels the lack
of muscle atonia – REM sleep without
atonia (RSWA) –, the basic feature of
RBD, which is often a precursor and
companion of PD. 

THE REGULATION OF REM SLEEP ATONIA

The key members of the atonia net-
work are the SLD and the noradrener-
gic precoeruleus region (PC); addition-
ally, the caudal laterodorsal tegmental
nucleus (cLTDN), the mesencephalic
periaqueductal grey, orexin and me -
lanin cells of the lateral hypothalamus,
as well as nuclei of the ventromedial
medulla (VmM) participate in it39. 

The glutamatergic activation of
REM-on neurons in the ventral SLD40, 41

mediates REM motor atonia through two redundant
trajectories: recruiting glycinergic interneurons in
the spinal ventral horn (SVH) and GABAergic/gly -
ci nergic neurons in the VmM; inhibiting SVH
motor neurons in both ways. 

Silencing SLD neurons suspends normal REM
sleep muscle atonia resulting in RSWA, while its
selective activation favors cataplexy and sleep
paralysis42–44. A direct noradrenergic pathway links
the spinal motoneurons with the locus coeruleus
(LC), and a serotonergic one with the dorsal raphe
(DR) both inhibiting the REM-atonia generation of
the SLD45 (Figure 3).

Figure 2. Schematic representation of NREM and REM sleep depend-
ent memory processes

Figure 3. The sublaterodorsal nucleus (SLD)’s central role in REM
sleep atonia40
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Parasomnias

SEVERAL REM SLEEP PARASOMNIAS REPRESENT

REM DISSOCIATION PHENOMENA

The separated ascending and descend-
ing pathways regulating the rostral and
caudal components of the REM sleep
pattern allow REM dissociation; i.e.
REM sleep elements as dreaming or
muscle atonia emerging separately in a
wrong time or missing in the right
time, during REM sleep (Table 1). Ca -
ta plexy, sleep paralysis and hypnagog-
ic hallucinations make positive REM
sleep dissociation states (REM sleep
phenomena emerge in inadequate pha -
ses), while RBD represents a negative
dissociation, where the normal muscle
atonia is absent or fragmentary during
REM sleep (Figure 4).

SLEEP PARALYSIS WITH HALLUCINATIONS: REM

SLEEP ATONIA AND DREAMING EMERGE IN

WAKEFULNESS OR DROWSINESS 

Sleep paralysis has been described in
as early as 166446. Over the centuries,
it has often been attributed to the pres-
ence of evil: demons, the old hag in
Shakespeare’s Romeo and Juliet. In the
frightening paralyzed state occurring
during sleep-wake transitions (instead
of REM sleep), the affected person
cannot move or speak for a few minu -
tes, experiences chest pressure, unable
to call, suffocating – “something is sit-
ting on the chest” – or feeling outside own body. It
resolves spontaneously or on called by name. Sleep
paralysis occurs solely or as a member of the nar-

coleptic tetrad. Its family accumulation suggests a
genetic back ground47. Po ly mor phisms in the PER2
(Period Cir ca dian Re gulator 2) gene, a component
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Figure 4. Inappropriate activation of the REM sleep atonia circuitry
during wakefulness is thought to produce cataplexy. Glutamatergic
REM-active SLD neurons trigger the paralysis of REM sleep via stim-
ulation of the GABAergic/glycinergic cells in the VmM. These VmM
neurons send inhibitory projections to skeletal motor neurons. Under
normal conditions, strong positive emotions are processed via
GABAergic neurons of the CeA, which then inhibit cells in the LC and
vlPAG. However, in the absence of the LH hypocretinergic neurons in
cataplexy, this inhibition fails, so the REM sleep atonia circuit is
released from inhibition and triggers muscle paralysis while the indi-
vidual remains conscious. The inhibition of LC neurons during cata-
plexy removes noradrenergic inputs to motoneurons, thereby enhanc-
ing the muscle paralysis of cataplexy

CeA: central nucleus of the amygdala, GABA: γ-aminobutyric acid,
LC: locus coeruleus, LH: lateral hypothalamus, VmM: ventral medial
medulla, SubC: subcoeruleus, vlPAG: ventrolateral periaqueductal
gray, MN: motoneuron

Table 1.  REM sleep dissociation phenomena

Abnormally emerging/ State of appearance Duration
missing element of REM sleep

Sleep paralysis REM muscle atonia Sleep-wake transition Minutes
Cataplexy REM muscle atonia Wakefulness Seconds -minute; 

sudden
Hypnagogic hallucination REM sleep dreaming Sleep-wake transition, Minutes?

sleep paralysis, cataplexy
Sleep attacks in narcolepsy REM sleep Wakefulness >Minutes
or Parkinson’s disease
REM sleep without atonia REM muscle atonia is absent REM sleep periods of REM sleep

or fragmentary
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of the circadian clock mechanism, have been asso-
ciated with a predisposition to sleep paralysis48. 

Multimodal hallucinations and lucid dreaming
co-occur in 75% of cases49, 50 Intruder (someone in
the room) and in cubus type (someone carrying out
agg res sive/sexual acts) hallucinations occur. Since
those hallucinations are perceived as real by the
individual, they may lead to even legal conse-
quences. Due to hallucinations with “demonic sig-
nificance”, the condition has been sometimes
linked to schizo phre nia. Antidepressants (Es ci ta l o -
pam, Ven la faxi ne) have been suggested for treating
the most disturbing cases, reassurance and tailored
psychothe rapy (meditation-relaxation therapy) may
help.

REM SLEEP BEHAVIOR DISORDER: MISSING OR FRAGMENTED

REM MUSCLE ATONIA ALLOWS DREAM ENACTMENT

RBD has emerged out of the big bunch of night-
time confusional states and violent behaviors, the
latter reported by 1.7% of the population51. First
described in 198652, RBD is a parasomnia, in that
the individual “effects” his/her dreams due to
RSWA, because the normal loss of muscle tone (a
transient global paralysis) of REM sleep, is
absent. 

The International Classification of Sleep Dis -
orders (2014) suggested the following diagnostic
criteria for RBD: (1) repeated episodes of sleep-re -
lated vocalization and/or complex motor beha viors;
(2) these behaviors are documented by poly som no -
graphy to occur during REM sleep or, based on
clinical history of dream enactment, are presumed
to occur during REM sleep; (3) polysomnographic
recording demonstrates RSWA; (4) the disturbance
is not better explained by another sleep or mental
disorder, medication or substance abuse53. 

RSWA is defined as sustained or intermittent
elevation of chin electromyographic (EMG) tone or
phasic chin or limb EMG twitching54, 55, during at
least one third of the REM sleep period. Since the
persisting upper airway muscle tone may prevent
some apneic episodes, RSWA can be protective
against obstructive sleep apneas.

Despite the fact that RBD is a REM sleep disor-
der, it seems to affect sleep globally. Based on a
cohort study56, NREM micro-sleep instability ref -
lec ted by the rate of CAP was lower (sleep was
more stable) in idiopathic RBD patients compared
to controls. The reduction of CAP rate was even
more marked in the converter RBD-group (pro-
gressing to a Parkinsonian condition). Thus a lower
CAP rate signalized a higher risk for conversion
into a syncleinopathy.

RBD is categorized as idiopathic, or rather isolat-
ed when standing alone; and symptomatic or rather
combined when associated with other disorders or
states. The combined forms can be iatrogenic relat-
ed to medication and other substances. They often
associate to neurodegenerative diseases especially
α-synucleinopathies, as well as to tauopathies, TDP-
43-pathies (transactive response DNA 43 kDA bind-
ing proteinopathies), to narcolepsy and to any caus-
es affecting the REM sleep network57. 

Prevalence

The prevalence of isolated RBD is ~ 0.38%-2% in
the population >60 years-old and 5-13% in older
community-dwellers doubly affecting men58, 59. An
equal gender ratio has been reported in younger age
groups60, often in combination with narcolepsy and
other conditions. There is a high rate of autoim-
mune comorbidity in women61. The disorder is ten-
fold more frequent in patients with mental health
conditions. Additional risk factors include antide-
pressant use, low educational level, historic head
trauma, pesticide exposure, smoking, ischemic
heart disease, and inhaled corticosteroids62. 

Clinical features

RBD is characterized by sudden, vehement and
fragmentary movements and speech or shouts out
of sleep. There are frequent injuries caused by the
patient falling out of bed or the bed partner being
attacked by the half-sleeping patient enacting often
horrifying dreams61. RBD episodes favor the sec-
ond half of the night - the period of REM sleep
dominance; contrasting NREM parasomnia epi -
sodes emerging in the early hours of night sleep.
The patients remember their dreams often involving
elements of aggression or animals63, 64.

Melatonin 3-12 mg or clonazepam 0.5-2.0 mg
usually help. Clonazepam may aggravate obstruc-
tive respiratory events and cognitive symptoms;
melatonin is usually well-tolerated. Donepezil and
Vortioxetine are additional treatment options. Se -
cond-line therapies include temazepam, lora ze pam,
zolpidem, zopiclone, pramipexole, ramelteon, ago -
melatine, cannabinoids, and sodium oxybate. A
bed-alarm system may protect patients leaving their
bed during episodes, and counselling or hypnosis
might help suppressing nightmares65, 66.

Aetiologies of RBD

Any etiology impairing the complex REM atonia
network may cause RSWA/RBD. The duration
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(transitory or chronic) and associated features
depend on the origin of the brainstem dysfunction
(drug, hypoxia in obstructive sleep apnea) or lesion
(neurodegenerative, inflammatory etc.)

RBD may be an early sign of neurodegeneration
offering an opportunity to understand, and - most
importantly - prevent or delay subsequent neurologic
impairment. In a seminal study on elderly patients
with isolated RBD, 80.8% developed a parkinso -
nian disorder/dementia during 16 years follow up,
with a mean delay of 14 years from RBD onset67.
This high conversion-rate to neuro-degeneration
was confirmed later by many additional studies. 

There is a striking specificity of RBD converting
to a synucleinopathy as PD, diffuse Lewy body dis-
ease (DLB), multisystem aptrophy (MS), spinoce -
rebellar atrophy type 2, Tourette syndrome, Möbius
syndrome or Smith-Magenis syndrome. The disor-
der also links to tauopathies and TDP 43-pathies as
Alzheimer’s disease, amyotrophic lateral sclerosis
and Huntington’s disease, Guadalopean Par kin so -
nism and progressive supranuclear palsy57, 58, 62, 68.
In a systematic review on 237 adult RBD patients
with a non-synucleinopathy neurology conditions
19% had brain lesions, typically in the brainstem.
Pontine ischemic lesions were the most frequent,
but other types of structural lesions and conditions
(including inflammatory, demyelinating and au to -
immune, 22%) occurred too. Alzheimer’s disease
developed in 12% of RBD cases and other tau -
opathies in 9%. The high prevalence (12%) of
Arnold-Chiari malformation highlighted the impor-
tance of brainstem involvement; suggesting the
pathogenic role of the affected network rather than
the type of lesion69. Based on clinical experiences,
these features of RBD appearing with narcolepsy,
do not progress to a neurodegenerative condition;
narcolepsy seems to be protective in that respect. 

Imaging features of RBD may mark the risk for
Parkinson’s disease

RBD-related brain changes were detected in vivo
with structural MRI and diffusion tensor imaging
(DTI): microstructural changes in the white matter
of the brainstem, the right substantia nigra, the
olfactory region, the left temporal lobe, the fornix,
the internal capsule, the corona radiata, and the
right visual stream70. The progression of RBD
linked with parieto-occipital and orbitofrontal thin-
ning as well as visuospatial loss, while the cognitive
decline associated with parietal degeneration71.
Isolated RBD patients’ decreased striatal DAT
binding72, the loss of nigral hyperintensity on 3.0-T
MRI and transcranial echo may predict short-term

progress of RBD to synucleinopathy73. Multimodal
MRI, neuro-melanin-sensitive volume-, and signal
intensity measures discriminated RBD patients
from controls and predict a Parkinsonian progress74.

RBD caused by autoimmunity: anti-IgLON5 disease
Growing number of diseases have been recognized
to have unexpected inflammatory or autoimmune
etiologies e.g. PD75 , Alzheimer’s disease76 and nar-
colepsy77 as well as paraneoplastic limbic en ce -
phalitis and Morvan syndrome. A human leucocyte
antigen (HLA) association is usually considered a
hint to autoimmunity e.g. in narcolepsy, which is
another REM sleep dysregulation syndrome some-
times overlapping with RBD and carrying the
strongest HLA Class II association among all dis-
eases78. Also RBD link with HLA class II genes:
84% of 25 RBD patients carried the DQw1
(DQB1*05,06) alleles and 28% were DR2 positive79. 

The possibility of RBD with an autoimmune
background is revealed by the recognition of a
novel autoimmune-neurodegenerative disease-
spectrum anti-IgLON5 disease, manifesting combi-
nations of parasomnias, obstructive sleep apnea
syndrome with stridor, bulbar and limb movement
disorders, axonal neuropathy and cognitive loss80.
As an autoimmune tauopathy81, anti-IgLON5 dis-
ease models the link between autoimmunity and
neurodegeneration82. The hallmark of the disease is
the presence of antibodies against IgLON5, a neu-
ral cell adhesion protein of unknown function. The
effect of immunotherapy is not yet clear. About
80% of anti-IgLON5 patients present with sleep-
related vocalizations, movements and behaviors as
well as sleep-disordered breathing at age> 60, with
an equal male/female ratio. Neuropathology exam-
ination shows an atypical neuronal tauopathy with
neuronal loss and gliosis in the hypothalamus and
brainstem tegmentum83–85. Video-polysomnography
may reveal a NREM parasomnia with sleep-talking,
simple or finalistic movements, poorly structured
N2 sleep, obstructive sleep apnea with stridor and
RSWA. A lymphocytic pleocytosis was found in
one patient. Four syndrome combinations have
been delineated: (1) insomnia, parasomnia and dis-
ordered breathing; (2) a bulbar syndrome + saliva-
tion, stridor, even acute respiratory failure; (3) a
supranuclear palsy-like syndrome; and (4) cogni-
tive decline with figural and working memory
impairment, with or without chorea. Most patients
carry the HLA-DRB1*10:01 and HLA-DQB1*
05:01 haplotypes (the same as isolated RBD pa -
tients) and have IgLON5 antibodies both in serum
and cerebrospinal fluid. Anti-IgG1 and -IgG4 anti-
bodies are found86. 
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RBD variants and the differential diagnosis of
RBD 

In overlap parasomnias, status dissociatus and ag -
ryp nia excitata, fragments of partial wakefulness,
NREM and REM sleep amalgamate in irregular
com binations, sometimes underlined by brainstem
disorders, encephalopathies, neurodegeneration or
autoimmune encephalitis.

Sleep-related epileptic seizures, obstructive sleep
apneas with pseudo-RBD, confusional arou sals as
well as nocturnal panic attacks may raise differential
diagnostic issues solved by careful analysis of
symptoms, clinical history video-polysomnography.

RBD and post-traumatic stress disorder
There is a peculiar link of RBD with PTSD. A
motor dysfunction with increased muscle twitches
during REM sleep has been early noticed in relation
to stress and PTSD87, and several case studies and
war-veteran cohort studies found higher rate of
RBD in PTSD patients compared even to trauma-
survivors without PTSD88. The frequent co-occur-
rence of RBD and PTSD generated a distinct term -
trauma-associated sleep disorder (TASD) - sharing
the features of PTSD and RBD89.

In PTSD patients, the rate of stress-related norep-
inephrine turn-over might have changed in the LC,
leading to norepinephrine depletion and even cell
death. LC’s fine structural changes in relation to
stress could be shown by neuroimaging in humans90.
In rats, a single acute stressor could precipitate long-
lasting changes in LC function contributing to
stress-related disease91. Due to the persistent
decrease of LC noradrenergic output to the REM
atonia network, RSWA and RBD may evolve92.
Another important mechanism potentially leading to
the loss of muscle atonia in PTSD might involve
stress-related changes of the Papez circuit and sero-
tonergic pathways related to the DR nucleus93.

RBD in PTSD might be a good example of a
deep psychological impact turning to an organic
condition. In addition, the specific link of RBD
with PTSD justifies the diagnosis of PTSD as a dis-
tinct entity: just experiencing distress might be
qualitatively different compared to experiencing
distress + having PTDS (intrusion symptoms, avoi -
dance of trauma related stimuli, mood and cogni-
tive changes, insomnia or hypersomnia, reckless
self-neglecting behavior, irritability and concentra-
tion disturbances (DSM-5)94. Whether RBD asso -
ciated with PTSD carries the long-term risk for neu-
rodegeneration, is unknown. 

RSWA but no RBD with antidepressants?
The association of RBD/RSWA with the use of
antidepressants – selective serotonin reuptake in -
hibitors (SSRI) and selective norepinephrine reup-
take inhibitors (SNRI) – has been early described95.
A large study found an association of SSRI and
SNRI use with RSWA only, curiously not accom-
panied by an increase of the frequency of RBD96.
Another study found similar results: RSWA but no
RBD had occurred in 8.8% of young psychiatry
inpatients treated with fluoxetine, venlafaxine, mir-
tazapine, paroxetine, clomipramine or sertraline as
well as quetiapine; thus, an association of antide-
pressants with a florid/hypermotor RBD has re -
mained dubious97. A large study on 318 patients
evi denced the association of comorbid depression
and SSRI use with RBD, but a clear cause-and-
effect relation between antidepressants and RBD
has neither been confirmed98. 

Because antidepressants increase REM sleep
muscle tone, they are routinely used in the treat-
ment of cataplexy99. On the other hand, since
around one third of RSWA cases of variable etiolo-
gies manifest RBD54, the antidepressant-related
increase of RSWA-rate without concomitant
increase of RBD-rate needs an explanation. One
may speculate that the iatrogenic increase in muscle
tone is mild, sufficient just to cause RSWA, but it is
insufficient to manifest RBD. Another hypothesis is
that since the body-site of atonia involved by
RSWA determines the clinical manifestation of
RBD, RSWA affecting facial muscles only, as may
be the case with antidepressants, would not lead to
spectacular RBD episodes, while RSWA in limb
muscles would100.

SLEEP RELATED PAINFUL ERECTION: THE NORMAL REM-RELATED

ERECTION GOES WRONG 

Sleep related painful erection is a rare parasomnia,
occurring in 1% of men presenting with sexual
problems. It differs from the normal REM-related
penile tumescence only by the associated pain
awakening the individual from sleep; the patient
may have normal penile erection and sexual life
when awake101. Local origins, a vagal dysfunction
and central, especially antero-lateral hypothalamic
etiologies have been raised. 

Baclofen has been found a good treatment
option. Beta blockers, benzodiazepines and antide-
pressants were transitorily effective in some cases,
and several additional treatments have also been
used. 
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