Clinical Neuroscience

[Congress calendar]

JULY 20, 2011

Clinical Neuroscience - 2011;64(07-08)

COMMENTS

0 comments

Further articles in this publication

Clinical Neuroscience

[Recent changes in the paradigm of limbic encephalitis]

ILLÉS Zsolt

[In the recent years, novel antibodies associated with limbic encephalitis have been described, which target such extracellular receptors or proteins that have been already indicated in the pathogenesis of hereditary or degenerative diseases. In a number of cases, where pathogenic role of antibodies generated against the voltage-gated potassium channel (VGKC) had been presumed, antibodies against a trans-synaptic scaffolding protein, LGI1 were indicated. Antibody response against NMDA-receptors has been suggested as a major cause of limbic encephalitis especially in young females, resulting in a typical clinical syndrome sometimes triggered by an ovarian teratoma. Antibodies against other receptors essential in synaptic transmission and plasticity (AMPA and GABAB receptors) have been also indicated, partially elicited by paraneoplastic processes. Such antibodies against surface proteins result in severe but potentially treatable diseases due to reversible internalization of the antigens crosslinked by the bivalent antibodies. In contrast, the rare classical onconeural antibodies reacting with intracellular targets (anti-Hu, anti-Ta/Ma2, anti- CV2/CRMP5) may elicit additional symptoms beside limbic encephalitis and the prognosis of such syndromes is poor.]

Clinical Neuroscience

[Our first impact factor: 0.236 (2010)]

RAJNA Péter, TAJTI János

Clinical Neuroscience

[Modeling of human movements, neuroprostheses]

LACZKÓ József

[Modeling of human movements became very important as modern methods in informatics and engeniering are available to discern human movement characteristics that were hidden before. The construction of models of neural control and mechanical execution of human movements helps the diagnosis of movement disorders and predicts the outcome of clinical intervention and medical rehabilitation. Here I present methods for recording kinematic and muscle activity patterns. Measurements can be compared with predicted movement patterns based on mathematical models. There are an infinity of different muscle activity patterns or joint rotation patterns to perform a given motor task. I present the main approaches that are used to find such solutions from the infinity of choices that might be employed by the central nervous system. I present a practical application of movement modeling: In rehabilitation of spinal cord injured patients we develop and apply artificially controlled neuroprostheses to generate active cycling lower limb movements in the patients of the National Institute for Medical Rehabilitation.]

Clinical Neuroscience

[Extension of polynomial analysis of interstitial I-125 brachytherapy for 48 months]

KOLUMBÁN Zsuzsa, MAJOR Tibor, JULOW Jenő

[Objective - Previously we described from 20 patients’ data with our new “polynomial prediction approach” the volumetrical changes following gliomas I-125 brachytherapy. The aim of this study is to extend the polynomials for 48 months, and to carry out multivarial analysis of several different aspects. Methods - 20 inoperable low-grade gliomas were followed for a 48-month period after I-125 interstitial irradiation. The delivered dose on the tumor surface was 50-60 Gy. Dose planning and image fusion were done with the BrainLab Target 1.19 software, mathematical and statistical computations were carried out with the Matlab numeric computation and visualization software. Volumes of tumor necrosis, reactive zone and edema referred to as “triple ring” were measured on image fused control MRI and planning CT images. The measured volumes were normalized with respect to the reference volumes. Mean values of volumes were determined, then polynomials were fitted to the mean using the polynomial curve fitting method. The accuracy of our results was verified by correlating the predicted data with the measured ones. Results - We have found that the edema reaches its maximum two times after irradiation during the 48 months follow up period. We have shown that small tumors react more rapidly and creating greater volumes of the “triple ring” than bigger ones. Conclusions - The polynomial prediction approach proposed here reveals the dynamics of triple ring for 48 months. The derived polynomials and the multivarial analysis carried out afterwords help to (i) design the best treatment, (ii) follow up the patient's condition and (iii) plan reirradiation if necessary.]

Clinical Neuroscience

[Phylo- and ontogenetic aspects of erect posture and walking in developmental neurology]

BERÉNYI Marianne, KATONA Ferenc, CARMEN Sanchez, MANDUJANO Mario

[The group or profile of elementary neuromotor patterns is different from the primitive reflex group which is now called the “primitive reflex profile.” All these elementary neuromotor patterns are characterized by a high degree of organization, persistence, and stereotypy. In many regards, these patterns are predecessors or precursors of from them the specific human motor patterns which appear spontaneously later as crawling, creeping, sitting, and walking with erect posture. On the basis of our experiences it can be stated that the elementary neuromotor patterns can be activated in all neonates and young infants as congenital motor functions. With regards to their main properties and functional forms, the normal patterns can be divided into two main groups: (1) One group is characterized by lifting of the head and complex chains of movements which are directed to the verticalization of the body; (2) The other group is characterized by complex movements directed to locomotion and change of body position. The neuromotor patterns can be activated by placing the human infant in specific body positions that trigger the vestibulospinal and the reticulospinal systems, the archicerebellum and the basal gangliae. Most of these systems display early myelinisation and are functioning very soon. Many of the elementary neuromotor patterns reflect the most important - spontaneously developing - forms of human movements such as sitting upright in space and head elevation crawling and walking. The majority of the human neuromotor patterns are human specific. When the infant is put in an activating position, crawling, sitting up, and walking begin and last as long as the activating position is maintained. Each elementary neuromotor pattern is a repeated, continuous train of complex movements in response to a special activating position. The brainstem is not sufficient to organize these complex movements, the integrity of the basal ganglia is also necessary. Elementary sensorimotor patterns during human ontogenesis reflect phylogenetic develpoment of species specific human functions. During ontogenesis spontaneous motor development gradually arises from these early specific sensorimotor predecessors.. The regular use of the elementary neuromotor patterns for diagnostic puposes has several distinct advantages. The neuromotor patterns have a natural stereotypy in normal infants and, therefore, deflections from this regular pattern may be detected easily, thus, the activation of the elementary neuromotor pattern is a more suitable method for identifying defects in the motor activity of the neonate or young infant than the assessment of the primitive reflexes. The “stiumulus positions,” which activate specific movements according to how the human neonate or young infant is positioned, do not activate such motor patterns in neonate or young primates including apes. The characteristic locomotor pattern in these adult primates, including the apes, is swinging and involves brachiation with an extreme prehensility. This species specific motor activity is reflected in the orangutan and gibbon neonates by an early extensive grasp. However, according to our investigations, no crawling, creeping, elementary walk, or sitting up can be activated in them. Neonates grasp the hair of the mother, a vital function for the survival of the young. In contemporary nonhuman primates including apes, the neonate brain is more mature. Thus, pronounced differences can be observed between early motor ontogenesis in the human and all other primates. The earliest human movements are complex performances rather than simple reflexes. The distinction between primitive reflexes and elementary neuromotor patterns is essential. Primitive reflexes are controlled by the brainstem. All can be activated in primates. These reflexes have short durations and contrary to elementary sensorimotor patterns occur only once in response to one stimulus, e.g., one head drop elicits one abduction-adduction of the upper extremities correlated to adduction and flexion of the lower extremities to a lesser degree with the Moro reflex. Elementary neuromotor patterns are much more complex and most of them including elementary walk may be elicited as early as the 19th-20th gestational week, though less perfectly than later.]

All articles in the issue

Related contents

Clinical Neuroscience

[CONGRESS CALENDAR]

Ca&Bone

[Forthcoming congress]

Hypertension and nephrology

[The 18th Congress of the Hungarian Society of Hypertension]

Hungarian Radiology

[The 9th ESSR Congress Valencia, 11-12 October 2002 Hungarian President to Lead the Society]

NÉMETH Éva

Clinical Neuroscience

[A prospective study evaluating the clinical characteristics of cluster headache]

ERTSEY Csaba, VESZA Zsófia, BANGÓ Márta, VARGA Tímea, NAGYIDEI Diána, MANHALTER Nóra, BOZSIK György

[Introduction - Although cluster headache (CH) is one of the most severe human pain syndromes, its symptoms and therapeutic possibilities may be suboptimally recognised in current medical practice in Hungary. Aim - To present the clinical characteristics of CH based on a prospective study of patients attending the Headache Service of the Department of Neurology, Semmelweis University. Methods - We collected information about the symptoms, diagnosis and previous treatment of CH patients by filling in a 108-item questionnaire during outpatient visits. Results - In the 5-year period between 2004 and 2008 we obtained data from 78 CH patients (57 males and 21 females; mean age: 44.6±14.6 years). The male:female ratio did not change in subgroups based on disease onset (calendar years). Ninety-three percent considered CH the most severe pain state of their life. The pain was strictly unilateral, affecting the territory of the 1st trigeminal division in all patients. The attacks were accompanied by signs of ipsilateral cranial parasympathetic activation (lactimation 83%, conjunctival injection 67%, rhinorrhea 56%, nasal congestion 43%); less frequently, signs of sympathetic dysfunction (ptosis 48%, miosis 7%) were also present. Two patients had attacks showing the typical localisation, severity and time course of CH attacks, but not accompanied by autonomic phenomena. A considerable part of the patients also observed symptoms that are usually ascribed to migraine (nausea 41%, vomiting 18%, photophobia 68%, phonophobia 58%). This may have been instrumental in the fact that, regardless of the characteristic clinical symptoms, the diagnosis of CH took 10 years on average. At the time of their examination 63% of patients were not using adequate abortive medications and 59% did not have an adequate prophylactic measure. Discussion - Cluster headache is characterised by attacks of devastating pain that warrant an early diagnosis and adequate treatment. Our study underlines that information about the diagnosis and therapy of CH should be emphasized on occasions of neurology specialty training and continuing medical education.]