Clinical Neuroscience


CSABA Zsolt, PASCAL Dournaud

MARCH 20, 2007

Clinical Neuroscience - 2007;60(03-04)

[Background and purpose - Understanding the trafficking of G-protein-coupled receptors is of particular importance. In the central nervous system, although some Gprotein- coupled receptors were reported to internalize in vivo, little is known about their trafficking downstream of the endocytic event. Methods - The distribution of the major somatostatin receptor subtype, the sst2, was monitored in the hippocampus using immunofluorescence from 10 minutes to seven days after in vivo injection of the receptor agonist octreotide. Results - From 10 min to 3 h after agonist injection, intensity of receptor immunoreactivity gradually decreased in the molecular layer of dentate gyrus and in the strata oriens and radiatum of CA1. Concomitantly, in the granular and pyramidal layers, small spherical immunofluorescent particles became apparent in perikarya, shortly after agonist stimulation (i.e. 30 min, 60 min). After longer survival times (i.e. 3 h, 6 h, 24 h), immunolabeling was confined to larger, intensely-stained intracytoplasmic vesicles. From 48 h to 7 d after agonist injection, distribution and intensity of sst2 receptor immunoreactivity became similar to that of control animals. The sst2 receptor labeling extensively colocalized with TGN38 and syntaxin 6 after OCT injection. Colocalization with trans-Golgi markers was observed as soon as 1 h after OCT injection and still present 24 h after. By contrast, colocalization with the endoplasmic reticulum marker PDI and the cis-Golgi marker GM130 was never observed. Conclusions - Our results suggest that upon agonist stimulation, dendritic receptors are retrogradely transported to a trans-Golgi network domain enriched in the t-SNARE syntaxin-6 and TGN38 proteins before recycling.]



Further articles in this publication

Clinical Neuroscience



[Dedication 2007;60(03-04)]

Clinical Neuroscience

[Editor’s note]


[Editor’s note 2007;60(03-04) ]

Clinical Neuroscience



[Based on data accumulated regarding the neuroprotective action of Proline-Rich-Peptide-1 (PRP-1, a fragment of neurophysin vasopressin associated hypothalamic glycoprotein consisting of 15 amino acid residues) on neurons survival and axons regeneration and taking into the account that LVV-Hemorphin-7 (LVV-H7, an opioid peptide, widely distributed in different cell types of various tissues of intact rats, including those of the nervous and immune systems) derived from the proteolitic processing of hemoglobin in response to adverse environmental and physiological conditions, possesses the anti-stressor properties, we used histochemistry, immunohistochemistry and electrophysiology to investigate the putative neuroprotective action of Central Asian Cobra Naja naja oxiana snake venom (NOX) on trauma-injured rats. ABC immunohistochemical method and histochemical method on detection of Ca2+- dependent acid phosphatase activity were used for the morpho-functional study. By recording the electrical activity of the signals from the single neurons in and below the SC injury place, NOX venom has been shown to result in the complete restoration of hypothalamic-spinal projections originated from ipsi- and contra-lateral PVN and SON to neurons of SC lumbar part. NOX prevented the scar formation, well observed two months after SC injury in the control rats, resulted in the regeneration of nerve fibers growing through the trauma region, survival of the PRP-1- and LVV-H7-immunoreactive (Ir) neurons, and increase of the PRP-1- and LVV-H7-Ir nerve fibers and astrocytes in the SC lesion region. NOX was suggested to exert the neuroprotective effect, involving the PRP-1 and LVV-H7 in the underlying mechanism of neuronal recovery.]

Clinical Neuroscience


BAHNER Udo, GEIGER Helmut, PALKOVITS Miklós, LENKEI Zsolt, LUFT C. Friedrich, HEIDLAND August

[To test the effect of dehydration on brain atrial natriuretic peptide (ANP) concentrations in areas important to salt appetite, water balance and cardiovascular regulation, we subjected rats to dehydration and rehydration and measured ANP concentration in 18 brain areas, as well as all relevant peripheral parameters. Water deprivation decreased body weight, blood pressure, urine volume, and plasma ANP, while it increased urine and plasma osmolality, angiotensin II, and vasopressin. ANP greatly increased in 17 and 18 brain areas (all cut cerebral cortex) by 24 h. Rehydration for 12 h corrected all changes evoked by dehydration, including elevated ANP levels in brain. We conclude that chronic dehydration results in increased ANP in brain areas important to salt appetite and water balance. These results support a role for ANP as a neuroregulatory substance that participates in salt and water balance.]

Clinical Neuroscience


BALI Balázs, NAGY Zoltán, KOVÁCS J. Krisztina

[Introduction - (-)Deprenyl is an irreversible inhibitor of type B monoamine oxidase (MAO-B), which is now used for treatment of Parkinson’s or Alzheimer’s diseases. Evidence suggests that the neuroprotective effect of deprenyl may not be related exclusively to the inhibition of the enzyme MAO-B. Methods - To test the impact of deprenyl on ischemiainduced changes in vitro, we followed the time course of propidium iodide (PI) uptake as an indicator of neuronal cell death as well as the expression of apoptotic factors in organotypic hippocampal slice cultures exposed to oxygen- glucose deprivation (OGD) for 45 min. Results - The first signs of neuronal death were detected 2 hours after OGD and were extended to all subfields of the hippocampus by 24 hours post-injury. Presence of deprenyl (10-9 M) significantly delayed the cell death induced by the insult. Exposure of control cultures to deprenyl significantly increased the abundance of Bcl-2 and Bcl-xl mRNAs as revealed by RT-PCR. OGD resulted in an elevation of anti-apoptotic factors, while the expression of pro-apoptotic bax remained unchanged. Conclusion - These data suggest that deprenyl is neuroprotective in an in vitro model of ischemia. Although deprenyl upregulates the expression of Bcl-2 under basal conditions, its effect on anti-apoptotic factors is not significantly manifested during OGD.]

All articles in the issue

Related contents

Clinical Neuroscience

[The role of immobilization stress and sertindole on the expression of APP, MAPK-1 and β-actin genes in rat brain]

KÁLMÁN János, PÁKÁSKI Magdolna, SZŰCS Szabina, KÁLMÁN Sára, FAZEKAS Örsike, SÁNTHA Petra, SZABÓ Gyula, JANKA Zoltán

[Stress, depending on its level and quality, may cause adaptive and maladaptive alterations in brain functioning. As one of its multiple effects, elevated blood cortisol levels decrease the synthesis of the neuroprotective BDNF, thus leading to hippocampal atrophy and synapse loss, and rendering it a possible cause for the Alzheimer’s disease (AD) related neuropathological and cognitive changes. As a result of the stress response, intraneuronal alterations - also affecting the metabolism of β-actin - can develop. These have a role in the regulation of memory formation (LTP), but in pathological conditions (AD) they could lead to the accumulation of Hirano bodies (actin-cofilin rods). According to the dementia treatment guidelines, the behavioural and psychological symptoms of AD can be treated with certain antipsychotics. Therefore, the aim of our study was to examine the effects of sertindole (currently not used in the standard management of AD) on the transcription of some AD associated genes (amyloid precursor protein [APP], mitogen activated protein kinase-1 [MAPK-1], β-actin) in the brain of rats exposed to chronic immobilization stress (CIS). Male Wistar rats were exposed to CIS for three weeks. The four groups were: control (n=16), CIS (n=10), 10 mg/kg sertindole (n=5) and 10 mg/kg sertindole + CIS (n=4). Following transcardial perfusion, the relative levels of hippocampal and cortical mRNA of the previously mentioned genes were measured with real-time PCR. CIS induced hippocampal β-actin (p<0.01), MAPK-1 and APP (p<0.05) mRNA overexpression. The simultaneous administration of sertindole suppressed this increase in β-actin, MAPK-1 and APP expression (p<0.05). Ours is the first report about CIS induced β-actin gene overexpression. This finding, in accordance with the similar results in APP and MAPK-1 expression, underlines the significance of cytoskeletal alterations in AD pathogenesis. The gene expression reducing effect of sertindole suggests that antipsychotic drugs may have a neuroprotective effect.]

Lege Artis Medicinae

[Postnatal development of the human hippocampal formation]


[Jean Piaget's theory suggests that cognitive development proceeds in discrete steps. The first is the sensorimotor period that happens in the first two years of life. In recent years it became clear, that it is necessary to have an intact and mature hippocampus for adequate memory formation, both in experimental animals and humans. In the present study, the morphological development of the human hip pocampus was correlated with the developmental changes of intellectual development. Our results suggest that neuronal cell formation of the human hippocampus terminates several weeks before birth. In the dentate gyrus, a small number (less than 1%) of granule cells are still formed around birth. Immature granule cells migrate through the hilar region to their final position in the granule cell layer during the first six postnatal months. Light microscope studies of individual neurons indicate that connections between granule cells and their target neurons are not yet formed at birth. Such connections develop during the third postnatal year. If the development of the synaptic connections is damaged in experimental animals, the hippocampal function will be permanently impaired. Newborns may have basic synaptic circuits for memory formation, but the postnatal morphological changes suggest the significant modification of the hippocampal circuits happening continuously from the newborn age until late childhood. These changes may cause the phenomenon of the "infantile amnesia". ]

Clinical Neuroscience

[Interhemispheric propagation of seizures in mesial temporal lobe epilepsy]

ERÕSS Loránd, ENTZ László, FABÓ Dániel, JAKUS Rita, SZŰCS Anna, RÁSONYI György, KELEMEN Anna, BARCS Gábor, JUHOS Vera, BALOGH Attila, BARSI Péter, CLEMENS Zsófia, HALÁSZ Péter

[Objectives - To investigate interhemispheric propagation of mesial temporal lobe epilepsy seizures in patients undergoing long-term video-EEG monitoring with combined scalp and foramen ovale electrodes. Aim of the study - To reveal possible interhemispheric propagation patterns in mesial temporal lobe epilepsy, to improve presurgical evaluation of temporal epileptic patients. Methods - Sixty-five seizures from 20 patients were analyzed. We defined two contralateral seizure propagation patterns: Type I for those seizures that spread to the contralateral foramen ovale electrodes earlier than to the contralateral scalp electrodes, and type II for the opposite. Participants - Twenty drug resistant epileptic patients were investigated in frame of their presurgical evaluation. Results - The majority of seizures (80%) were classified as type I. Inter-foramen ovale electrode propagation time was significantly shorter for type I compared to type II seizures. Ninety percent of patients had either type I or type II seizures only. Patients with type I seizures significantly more often had mesiotemporal structural alterations evident on magnetic resonance imaging scans, and became more often seizure-free after surgery compared to patients with type II seizures whose surgical outcome was less favorable or surgery could not be indicated because of independent bilateral ictal seizure-onset. Conclusions - The two types of contralateral propagation patterns we are describing seem to represent two subtypes of mesial temporal lobe epilepsy with different morphological and prognostic features. The predominance of type I over type II seizures together with shorter propagation times for type I seizures indicate a role of a more direct and dominant interhemispheric pathway in mesial temporal lobe epilepsy.]

Clinical Neuroscience


TAKÁCS József, ROBERTA Zaninetti, VÍG Julianna, VASTAGH Csaba, HÁMORI József

[We have investigated the spatio-temporal expression pattern of doublecortin (DCX) protein from postnatal day (P) 2 to postnatal day (P) 22 in the brain of developing mouse. We compared the expression of DCX in the rostral migratory stream (RMS) and dentate gyrus of the hippocampus (DG). Weak expression of DCX was detected in the RMS at P5, it became gradually stronger during the second postnatal week and reached its strongest expression by P18-P22. Moderate DCX immunostaining was present in the DG at P11, its marked expression - characteristic of newly generated neurons in the adult DG - appeared only after P22. Morphological and functional maturation was different in the RMS and DG, continuous neurogenesis appeared earlier in the RMS than in the DG.]